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Application ExampleSeparation problem

max{cT x : x ∈ X} ≡ max{cT x : x ∈ conv(X )}
X ⊆ Zn, P a polyhedron P ⊆ Rn and X = P ∩ Zn

De�nition (Separation problem for a COP)

Given x∗ ∈ P; is x∗ ∈ conv(X )? If not �nd an inequality ax ≤ b satis�ed by all points in X but
violated by the point x∗.

(Farkas' lemma states the existence of such an inequality.)
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Four properties that often go together:

De�nition

(i) E�cient optimization property: ∃ a polynomial algorithm for max{cx : x ∈ X ⊆ Rn}
(ii) Strong duality property: ∃ strong dual D min{w(u) : u ∈ U} that allows to quickly verify

optimality

(iii) E�cient separation problem: ∃ e�cient algorithm for separation problem

(iv) E�cient convex hull property: a compact description of the convex hull is available

Example:
If explicit convex hull strong duality holds

e�cient separation property (just description of
conv(X ))
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Theoretical analysis to prove results about

• strength of certain inequalities that are facet de�ning
2 ways

• descriptions of convex hull of some discrete X ⊆ Z∗
several ways, we see one next

Example

Let

X = {(x , y) ∈ Rm
+ × B1 :

m∑
i=1

xi ≤ my , xi ≤ 1 for i = 1, . . . ,m}

P = {(x , y) ∈ Rn
+ × R1 : xi ≤ y for i = 1, . . . ,m, y ≤ 1}

.
Polyhedron P describes conv(X )
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When the LP solution to this problem

IP : max{cT x : Ax ≤ b, x ∈ Zn
+}

with all data integer will have integer solution?
AN AB 0 b

cTN cTB 1 0


ABxB + ANxN = b

xN = 0 ABxB = b,
AB m ×m non singular matrix
xB ≥ 0

Cramer's rule for solving systems of linear equations:

[
a b
c d

] [
x
y

]
=

[
e
f

]
x =

∣∣∣∣e b
f d

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣ y =

∣∣∣∣a e
c f

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣ x = A−1B b =
Aadj
B b

det(AB)
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De�nition

• A square integer matrix B is called unimodular (UM) if det(B) = ±1
• An integer matrix A is called totally unimodular (TUM) if every square, nonsingular submatrix
of A is UM

Proposition

• If A is TUM then all vertices of R1(A) = {x : Ax = b, x ≥ 0} are integer if b is integer

• If A is TUM then all vertices of R2(A) = {x : Ax ≤ b, x ≥ 0} are integer if b is integer.

Proof: if A is TUM then
[
A I
]
is TUM

Any square, nonsingular submatrix C of
[
A I
]
can be written as

C =

[
B 0
D Ik

]
where B is square submatrix of A. Hence det(C ) = det(B) = ±1
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Proposition

The transpose matrix AT of a TUM matrix A is also TUM.

Theorem (Su�cient condition)

An integer matrix A is TUM if

1. aij ∈ {0,−1,+1} for all i , j
2. each column contains at most two non-zero coe�cients (

∑m
i=1 |aij | ≤ 2)

3. if the rows can be partitioned into two sets I1, I2 such that:

• if a column has 2 entries of same sign, their rows are in di�erent sets
• if a column has 2 entries of di�erent signs, their rows are in the same set

[
1 −1
1 1

] 1 −1 0
0 1 1
1 0 1




1 −1 −1 0
−1 0 0 1
0 1 0 −1
0 0 1 0



0 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 0 0 1 0
1 0 0 0 0


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Proof: by induction

Basis: one matrix of one element {0,+1,−1} is TUM
Induction: let C be of size k .

If C has column with all 0s then it is singular.
If a column with only one 1 then expand on that by induction
If 2 non-zero in each column then

∀j :
∑
i∈I1

aij =
∑
i∈I2

aij

but then a linear combination of rows is zero and det(C ) = 0

10
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Other matrices with integrality property:

• TUM

• Balanced matrices

• Perfect matrices

• Integer vertices

De�ned in terms of forbidden substructures that represent fractionating possibilities.

Proposition

A is always TUM if it comes from

• node-edge incidence matrix of undirected bipartite graphs
(ie, no odd cycles) (I1 = U, I2 = V ,B = (U,V ,E ))

• node-arc incidence matrix of directed graphs (I2 = ∅)

Eg: Shortest path, max �ow, min cost �ow, bipartite weighted matching
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Network: � directed graph D = (V ,A)
� arc, directed link, from tail to head
� lower bound lij > 0, ∀ij ∈ A, capacity uij ≥ lij , ∀ij ∈ A
� cost cij , linear variation (if ij 6∈ A then lij = uij = 0, cij = 0)
� balance vector b(i), b(i) > 0 supply node (source), b(i) < 0 demand node (sink,
tank), b(i) = 0 transhipment node (assumption

∑
i b(i) = 0)

N = (V ,A, l, u, b, c)

a

b(a)

c e

f

b d

lce/xce/uce , cce
c

0

e

−3

f

−2

a3

c0 e−3

f −2

b

−1

d

3

1/ · /4, 1

0/ · /3, 1

2/ · /5, 6

4/ · /7, 8

5/ · /8, 4

0/ · /3, 2
3/ · /3, 1

1/ · /4, 3

2/ · /4, 1
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Flow x : A→ R
balance vector of x: bx(v) =

∑
vu∈A

xvu −
∑

wv∈A
xwv , ∀v ∈ V

bx(v)


> 0 source

< 0 sink/target/tank

= 0 balanced

(generalizes the concept of path with bx(v) = {0, 1,−1})

feasible lij ≤ xij ≤ uij , bx(i) = b(i)
cost cT x =

∑
ij∈A cijxij (varies linearly with x)

If iji is a 2-cycle and all lij = 0, then at least one of xij and xji is zero.
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a

3

c

0

e

−3

f

−2

b

−1

d

3

0/0/3, 1

2/4/5, 6

1/1/4, 1

3/3/3, 1

4/5/7, 8

5/6/8, 4

0/3/3, 2

1/3/4, 3

2/2/4, 1

Feasible �ow of cost 109
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Find cheapest �ow through a network in order to satisfy demands at certain nodes from available
supplier nodes.
Variables:

xij ∈ R+
0

Objective:

min
∑
ij∈A

cijxij

Constraints: mass balance + �ow bounds∑
j :ij∈A

xij −
∑
j :ji∈A

xji = b(i) ∀i ∈ V

lij ≤ xij ≤ uij

min cT x
Nx = b
l ≤ x ≤ u

N node arc incidence matrix

(assumption: all values are integer,
we can multiply if rational)
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xe1 xe2 . . . xij . . . xem
ce1 ce2 . . . cij . . . cem

1 1 . . . . . . . . . = b1
2 . . . . . . . . . . = b2
...

...
. . . =

...
i −1 . . . . 1 . . . . = bi
...

...
. . . =

...
j . . . . . −1 . . . . = bj
...

...
. . . =

...
n . . . . . . . . . . = bn
e1 1 ≤ u1
e2 1 ≤ u2
...

...
. . . ≤

...
(i , j) 1 ≤ uij

...
...

. . . ≤
...

em 1 ≤ um
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Lower bounds

Let N = (V ,A, l, u, b, c) N ′ = (V ,A, l′, u′, b′, c)
b′(i) = b(i)− lij
b′(j) = b(j) + lij
u′ij = uij − lij
l ′ij = 0

i

b(i)

j

b(j)lij > 0

i

b(i)− lij

j

b(j) + lijlij = 0

uij − lij

cT x cT x′ +
∑
ij∈A

cij lij
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Undirected arcs

i j i j

20



Well Solved Problems
Network Flows
Application Example

Vertex splitting

If there are bounds and costs of �ow passing through vertices where b(v) = 0 (used to ensure that
a node is visited):
N = (V ,A, l, u, c, l∗, u∗, c∗)

a

b

c

d

as

bs

cs

ds

at

bt

ct

dt

From D to DST as follows:

∀v ∈ V  vs , vt ∈ V (DST ) and vsvt ∈ A(DST )
∀xy ∈ A(D) xtys ∈ A(DST )
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−4
2/ · /2, 1

3

1/ · /3, 2

−1
0/ · /3, 0

2

1/ · /4, 6

0/ · /3, 4

0

3

0

2

−4

0

−1

0

0/ · /3, 4

2/ · /2, 1

1/ · /3, 2

0/ · /3, 0

1/ · /4, 6

∀v ∈ V and vsvt ∈ AST  h′(vsvt) = h∗(v), h∗ ∈ {l∗, u∗, c∗}
∀xy ∈ A and xtys ∈ AST  h′(xtys) = h(x , y), h ∈ {l , u, c}

If b(v) = 0, then b′(vs) = b′(vt) = 0
If b(v) < 0, then b′(vs) = 0 and b′(vt) = b(v)
If b(v) > 0, then b′(vs) = b(v) and b′(vt) = 0

22



Well Solved Problems
Network Flows
Application Example(s, t)-�ow:

bx(v) =


k if v = s

−k if v = t

0 otherwise

, |x| = |bx(s)|

e −8

d −1

c6

b3

0//21//2

6//6

5//5

c e

b d

sb(s) t b(t)1//2

0//− b(e)

0//− b(d)0//b(b)

0//b(c)

b(s) =
∑

v :b(v)>0 b(v) = M

b(t) =
∑

v :b(v)<0 b(v) = −M

∃ feasible �ow in N ⇐⇒ ∃ (s, t)-�ow in Nst with |x | = M ⇐⇒ max �ow in Nst is M
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Residual Network N(x): given that a �ow x already exists, how much �ow excess can be moved in
G?

Replace arc ij ∈ N with arcs:

residual capacity cost
ij : rij = uij − xij cij
ji : rji = xij −cij

(N, c, u, x) (N(x), r, c′)
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Shortest path problem path of minimum cost from s to t with costs Q 0
b(s) = 1, b(t) = −1, b(i) = 0
if to any other node? b(s) = (n − 1), b(i) = 1, uij = n − 1

Max �ow problem incur no cost but restricted by bounds
steady state �ow from s to t
b(i) = 0 ∀i ∈ V , cij = 0 ∀ij ∈ A ts ∈ A
cts = −1, uts =∞

Assignment problem min weighted bipartite matching,
|V1| = |V2|,A ⊆ V1 × V2

cij
b(i) = 1 ∀i ∈ V1 b(i) = −1 ∀i ∈ V2 uij = 1 ∀ij ∈ A
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Transportation problem/Transhipment distribution of goods, warehouses-costumers
|V1| 6= |V2|, uij =∞ for all ij ∈ A

min
∑

cijxij∑
i

xij ≥ bj ∀j ∈ V2∑
j

xij ≤ ai ∀i ∈ V1

xij ≥ 0

if
∑

ai =
∑

bi then ≥ / ≤ become =
if
∑

ai >
∑

bi then add dummy tank nodes
if
∑

ai <
∑

bi then infeasible
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Multi-commodity �ow problem ship several commodities using the same network, di�erent origin
destination pairs separate mass balance constraints, share capacity constraints, min
overall �ow

min
∑

k c
kxk

Nxk ≥ bk ∀k∑
k x

k
ij ≤ uij ∀ij ∈ A

0 ≤ xkij ≤ ukij

What is the structure of the matrix now? Is the matrix still TUM?
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Plenty of applications. See Ahuja Magnanti Orlin, Network Flows,
1993

• A cargo company (eg, Maersk) uses a ship with a capacity to
carry at most r units of cargo.

• The ship sails on a long route (say from Southampton to
Alexandria) with several stops at ports in between.

• At these ports cargo may be unloaded and new cargo loaded.

• At each port there is an amount bij of cargo which is waiting to
be shipped from port i to port j > i

• Let fij denote the income for the company from transporting one
unit of cargo from port i to port j .

• The goal is to plan how much cargo to load at each port so as to
maximize the total income while never exceeding ship's capacity.
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• n number of stops including the starting port and the terminal port.

• N = (V ,A, l ≡ 0, u, c) be the network de�ned as follows:

• V = {v1, v2, ..., vn} ∪ {vij : 1 ≤ i < j ≤ n}

• A = {v1v2, v2v3, ...vn−1vn} ∪ {vijvi , vijvj : 1 ≤ i < j ≤ n}

• capacity: uvi vi+1 = r for i = 1, 2, ..., n − 1 and all other arcs have capacity ∞.

• cost: cvij vi = −fij for 1 ≤ i < j ≤ n and all other arcs have cost zero (including those of the form
vijvj)

• balance vector: b(vij) = bij for 1 ≤ i < j ≤ n and the balance vector of
b(vi ) = −b1i − b2i − ...− bi−1,i for i = 1, 2, ..., n
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Claim: the network models the ship loading problem.

• suppose that t12, t13, ..., t1n, t23, ..., tn−1,n are cargo numbers, where tij (≤ bij) is the amount
of cargo the ship will transport from port i to port j and that the ship is never loaded above
capacity.

• total income is

I =
∑

1≤i<j≤n

tij fij

• Let x be the �ow in N de�ned as follows:

• �ow on an arc of the form vijvi is tij
• �ow on an arc of the form vijvj is bij − tij
• �ow on an arc of the form vivi+1, i = 1, 2, ..., n − 1, is the sum of those tab for which a ≤ i and

b ≥ i + 1.

• since tij , 1 ≤ i < j ≤ n, are legal cargo numbers then x is feasible with respect to the balance
vector and the capacity restriction.

• the cost of x is −I .
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• Conversely, suppose that x is a feasible �ow in N of cost J.

• we construct a feasible cargo assignment sij , 1 ≤ i < j ≤ n as follows:

• let sij be the value of x on the arc vijvi .

• income −J
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