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Separation problem Applcation Examle

max{c”x :x € X} = max{c"x: x € conv(X)}
X C7Z", P apolyhedron P CR" and X = PN Z"
Definition (Separation problem for a COP)

Given x* € P; is x* € conv(X)? If not find an inequality ax < b satisfied by all points in X but
violated by the point x*.

(Farkas' lemma states the existence of such an inequality.)
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Properties of Easy Problems Application Example

Four properties that often go together:
Definition
(i) Efficient optimization property: 3 a polynomial algorithm for max{cx : x € X C R"}

(i) Strong duality property: 3 strong dual D min{w(u) : u € U} that allows to quickly verify
optimality

(iii) Efficient separation problem: 3 efficient algorithm for separation problem
(iv) Efficient convex hull property: a compact description of the convex hull is available

Example:
If explicit convex hull  strong duality holds
efficient separation property (just description of
conv(X))
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Application Example

Theoretical analysis to prove results about

® strength of certain inequalities that are facet defining
2 ways

® descriptions of convex hull of some discrete X C Z*
several ways, we see one next

Example
Let

X:{(X.,y)ERTxBl:ingmy,x,-glforizl,...,m}
i=1

P={(x,y) eR. xR :x; <yfori=1,...,my <1}

Polyhedron P describes conv(X)
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Totally Unimodular Matrices Application Example

When the LP solution to this problem
IP: max{c"x: Ax < b,x € Z"}

with all data integer will have integer solution?

Apxg + Anxy = b

|
|
|
|
} X/\/ZOWABXB:b,
| Ag m x m non singular matrix

7777777 i

XB>0
| | | el
¢t 1 ¢t 110

Cramer’s rule for solving systems of linear equations:

eb ae
abl[x] TJe . fd _ef T A2
cd| |ly| |f ab ab X="1g " det(Ag)
c cd
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Definition
® A square integer matrix B is called unimodular (UM) if det(B) = +1

® An integer matrix A is called totally unimodular (TUM) if every square, nonsingular submatrix
of Ais UM

4

Proposition
o If Ais TUM then all vertices of Ri(A) = {x: Ax = b,x > 0} are integer if b is integer
® If Ais TUM then all vertices of Ro(A) = {x : Ax < b,x > 0} are integer if b is integer.

Proof: if Ais TUM then [Ai/] is TUM
Any square, nonsingular submatrix C of [Al/] can be written as

Bi0
- [8]

where B is square submatrix of A. Hence det(C) = det(B) = +1
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Proposition

The transpose matrix AT of a TUM matrix A is also TUM.

Theorem (Sufficient condition)
An integer matrix A is TUM if
1. aj € {0, —1,+1} forall i,j
2. each column contains at most two non-zero coefficients (.| |a;| < 2)

3. if the rows can be partitioned into two sets |y, | such that:

® f a column has 2 entries of same sign, their rows are in different sets
® f a column has 2 entries of different signs, their rows are in the same set

01000
1-10 L-1-10 01111

1-1 100 1
k 1] 0 11 N 10111
1 01 0o 1o 10010

10000



Proof: by induction

Basis: one matrix of one element {0, +1, -1} is TUM
Induction: let C be of size k.
If C has column with all Os then it is singular.

If a column with only one 1 then expand on that by induction
If 2 non-zero in each column then

Vj:Za,-j:Za,-j

i€l i€l

but then a linear combination of rows is zero and det(C) = 0

Well Solved Problems
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Well Solved Problems

Other matrices with integrality property:
* TUM
® Balanced matrices
® Perfect matrices
® Integer vertices

Defined in terms of forbidden substructures that represent fractionating possibilities.

Proposition
A is always TUM if it comes from

® node-edge incidence matrix of undirected bipartite graphs
(ie, no odd cycles) (b = U, L =V ,B = (U,V,E))

® node-arc incidence matrix of directed graphs (I, = ()

Eg: Shortest path, max flow, min cost flow, bipartite weighted matching
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Outline

2. (Minimum Cost) Network Flows
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Well Solved Problems

. Network Flows
Terminology Appicavion Example

Network: e directed graph D = (V/, A)
e arc, directed link, from tail to head
e lower bound /;; > 0, Vij € A, capacity uj; > [, Vij € A
e cost ¢j, linear variation (if ij ¢ A then [;; = uj; =0, ¢;; = 0)
e balance vector b(i), b(i) > 0 supply node (source), b(i) < 0 demand node (sink,
tank), b(i/) = 0 transhipment node (assumption ). b(i) = 0)
N=(V,Alub,c) 1

3
B 143

2/-/5,6 0/-/3,2
3 5/-/8,4@ 2
1P(3), 4738

:
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Well Solved Problems

Network Flows
Network Flows Rpplication Example
Flow x: A = R
balance vector of x: b(v) = > xpu — > Xy, Vv € V
VUEA wvEA

> 0 source
b(v) ¢ <0 sink/target/tank
=0 balanced

(generalizes the concept of path with b (v) = {0,1, —1})

feasible [ < x;; < wjj, bi(i) = b(i)

T o v . . .
cost C'x =) 4 Cyx; (varies linearly with x)

If iji is a 2-cycle and all /; = 0, then at least one of xj; and xj; is zero.
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Example Repiontion Example

1/3/4,3

(by————

Feasible flow of cost 109
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Minimum Cost Network Flows Application Example

Find cheapest flow through a network in order to satisfy demands at certain nodes from available
supplier nodes.

Variables:
Xij € ]Ra—
Objective: min ¢ x
Nx =b
mian,-jx,-j [<x<u
ijeA
Constraints: mass balance + flow bounds N node arc incidence matrix
Z Xij — Z xi=b(i) VieV (assumption: all values are integer,
JiiEA JieA we can multiply if rational)

/,'jﬁX,'jSU,’j
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Well Solved Problems

Network Flows

Application Example
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Reductions/Transformations
Lower bounds

Let N =(V, Al u,b,c)

Well Solved Problems
Network Flows
Application Example

N = (V,AV v b c)
b'(i) = b(i) — Iy
b'(j) = b(j) + Iy
U{- = u,-j — /,"
Ih=0

19



Undirected arcs

Network Flows
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Vertex splitting

If there are bounds and costs of flow passing through vertices where b(v) =0

a node is visited):
N=(V,Aluc, I* *.c)

0

o
w

H

Network Flows

(used to ensure that

ds O—>»0 4at

by

Ct

ds =0 d;

From D to Dst as follows:

Vv eV ~ Vs, vy € V(Ds7) and vsvy € A(DsT)
Vxy € A(D) ~ xzys € A(DsT)

21
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Application Example

, h* e {l*,u* c*}
), he{l,u,c}

If b(v) =0, then b'(vs) = b'(v;) =0
If b(v) <0, then b'(vs) =0 and b'(v;) = b(v)
If b(v) >0, then b'(vs) = b(v) and b'(v;) =0

22



Well Solved Problems

(s, t)-flow: A sl
k if v=s

b(v)=< -k ifv=t, x| = |bx(s)|

0 otherwise

35//571 (b) (d)

0//b(b) 0// - b(d)
Y o b(z)//b(c) o 9— 1;((2)
s @ ® - (—)

B(S) = Sypuyo0 b(v) = M

I feasible flow in N <= 3 (s, t)-flow in Ny with [x] = M <= max flow in N is M

23



Well Solved Problems

. Network Flows
Residual Network

Application Example

Residual Network /(x): given that a flow x already exists, how much flow excess can be moved in
G?

i : . /
Replace arc ij € N with arcs: (N, c,u,x) (N(x),r,c)
[residual capacity|cost capacity=7 .
ITEN — ~
[/ I’,‘j = u,-j — X,'J' C,'j . )
I . ri = Xi: —Cii
J ji ij ij 2in 130 1
-2
a () demand=2 455 (0 a capacity=1 a(y 9 Ja
-1
430 16,1 4
1
9] O
P P
demand=6
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Special cases Application Example

Shortest path problem path of minimum cost from s to t with costs § 0
b(s) =1,b(t) =—1,b(i)=0
if to any other node? b(s) = (n—1),b(i) =1,uj =n—1

Max flow problem incur no cost but restricted by bounds
steady state flow from s to t
b(i)=0VieV, ci=0VijeA ts €A

Cts = 713 Uts = OQ

Assignment problem min weighted bipartite matching,
V1| = [Va, AC Vi x WV
Cij

b(i)=1VieVi b(i)=-1VieVy, uj=1VjcA

25
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Special cases Application Example

Transportation problem/Transhipment distribution of goods, warehouses-costumers

(Vi # |Val, uj =ooforalljje A
mian,-jx,-j
> xi > b Vi€ Vs
i
> % <ai vie v,
J
XUZO

if > a;,=> b; then > / < become =
if >~ a; > > b; then add dummy tank nodes
if > a; < > bj then infeasible

26



Network Flows

Multi-commodity flow problem ship several commodities using the same network, different origin
destination pairs separate mass balance constraints, share capacity constraints, min
overall flow

min >°, ckxk
Nxk > bk Vk
ZkXZ-SUk,'j kVI_']'GA
0 <xj <uj

What is the structure of the matrix now? Is the matrix still TUM?

27



Outline

3. Application Example

Well Solved Problems
Network Flows
Application Example
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Ship loading problem Apeication Examele

Plenty of applications. See Ahuja Magnanti Orlin, Network Flows,
1993

® A cargo company (eg, Maersk) uses a ship with a capacity to
carry at most r units of cargo.

® The ship sails on a long route (say from Southampton to
Alexandria) with several stops at ports in between.

® At these ports cargo may be unloaded and new cargo loaded.

® At each port there is an amount b;; of cargo which is waiting to
be shipped from port / to port j > i

® Let f; denote the income for the company from transporting one
unit of cargo from port i/ to port j.

® The goal is to plan how much cargo to load at each port so as to
maximize the total income while never exceeding ship’s capacity.

29
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Application Example: Modeling Application Examle

® 1 number of stops including the starting port and the terminal port.

o N=(V,A1=0,u,c) be the network defined as follows:
® V={vi,va,..,va U{yv;:1<i<j<n}
* A={wviva,vav3, ..va_1va} U{vyvi, vjv; : 1 < i <j < n}
=rfori=1,2 ..,n—1 and all other arcs have capacity co.

® capacity: uy,y,.,

® cost: ¢y, = —f; for 1 < i < j < n and all other arcs have cost zero (including those of the form
vijvj)

® balance vector: b(vj) = bjj for 1 </ < j < n and the balance vector of
b(V,') = 7b1,' — bz,' — .. b,;l?,' for | = 1,2, . n

30



Application

Example:

Modeling

Well Solved Problems
Network Flows
Application Example
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Application Example: Modeling Application Examle

Claim: the network models the ship loading problem.

suppose that tio, t13, ..., tip, t23, ..., ta—1,, are cargo numbers, where t; (< bj;) is the amount
of cargo the ship will transport from port / to port j and that the ship is never loaded above
capacity.

total income is

| = Z t,Jf,

1<i<j<n

Let x be the flow in NV defined as follows:

® flow on an arc of the form vj;v; is t;;

® flow on an arc of the form vjv; is b; — t;

® flow on an arc of the form v;vi11, i = 1,2,...,n — 1, is the sum of those t.;, for which a </ and
b>i+1.

since tjj, 1 < i < j < n, are legal cargo numbers then x is feasible with respect to the balance
vector and the capacity restriction.

the cost of x is —/.

32



Application Example: Modeling

® Conversely, suppose that x is a feasible flow in N of cost J.

® we construct a feasible cargo assignment s;;, 1 </ < j < n as follows:

® let s; be the value of x on the arc v;v;.

® income —J

Well Solved Problems
Network Flows
Application Example
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