
DM841

Heuristics for Combinatorial Optimization

Metaheuristics to Enhance Construction Heuristics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPOutline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. Iterated Greedy

7. GRASP

3



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPOutline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. Iterated Greedy

7. GRASP

6



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPBounded backtrack

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

7

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm


Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPOutline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. Iterated Greedy

7. GRASP

9



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPLimited Discrepancy Search

Limited Discrepancy Search (LDS)

• Key observation that often the heuristic used
in the search is nearly always correct with
just a few exceptions.

• Explore the tree in increasing number of
discrepancies, modifications from the
heuristic choice.

• Eg: count one discrepancy if second best is
chosen
count two discrepancies either if third best is
chosen or twice the second best is chosen

• Control parameter: the number of
discrepancies

10



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPOutline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. Iterated Greedy

7. GRASP

12



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPRandomization in Tree Search

The idea comes from complete search: the important decisions are made up in the search tree
(backdoors - set of variables such that once they are instantiated the remaining problem simplifies
to a tractable form)
 random selections + restart strategy

Random selections
• randomization in variable ordering:

• breaking ties at random
• use heuristic to rank and randomly pick from small factor from the best
• random pick among heuristics
• random pick variable with probability depending on heuristic value

• randomization in value ordering:
• just select random from the domain

Restart strategy in backtracking

• Example: Su = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 4, 8, 1, . . .)
13



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPOutline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. Iterated Greedy

7. GRASP

14



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPRollout/Pilot Method

Derived from A∗

• Each candidate solution is a collection of m components S = (s1, s2, . . . , sm).
• Master process adds components sequentially to a partial solution Sk = (s1, s2, . . . sk)

• At the k-th iteration the master process evaluates feasible components to add based on an
heuristic look-ahead strategy.

• The evaluation function H(Sk+1) is determined by sub-heuristics that complete the solution
starting from Sk

• Sub-heuristics are combined in H(Sk+1) by
• weighted sum
• minimal value

15



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

Speed-ups:

• halt whenever cost of current partial solution exceeds current upper bound
• evaluate only a fraction of possible components

16



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPOutline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. Iterated Greedy

7. GRASP

17



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPBeam Search

Again based on tree search:
• maintain a set B of bw (beam width) partial candidate solutions

• at each iteration extend each solution from B in fw (filter width) possible ways

• rank each bw × fw candidate solutions and take the best bw partial solutions

• complete candidate solutions obtained by B are maintained in Bf

• Stop when no partial solution in B is to be extended

18



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPOutline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. Iterated Greedy

7. GRASP

19



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPIterated Greedy

(aka, Adaptive Large Neighborhood Search)

Key idea: use greedy construction

• alternation of construction and deconstruction phases
• an acceptance criterion decides whether the search continues from the new or from the old
solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
(randomly or heuristically) destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r

20



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPOutline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. Iterated Greedy

7. GRASP

21



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPGRASP

Greedy Randomized Adaptive Search Procedure

Key Idea: Combine randomized constructive search with subsequent local search.

Motivation:

• Candidate solutions obtained from construction heuristics can often be substantially improved
by local search.

• Local search methods often require substantially fewer steps to reach high-quality solutions
when initialized using greedy constructive search rather than random picking.

• By iterating cycles of constructive + local search, further performance improvements can be
achieved.

22



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

• Randomization in constructive search ensures that a large number of good starting points for
subsidiary local search is obtained.

• Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.

• Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.

23



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

Restricted candidate lists (RCLs)

• Each step of constructive search adds a solution component selected uniformly at random
from a restricted candidate list (RCL).

• RCLs are constructed in each step using a heuristic function h.

• RCLs based on cardinality restriction comprise the k best-ranked solution components. (k is a
parameter of the algorithm.)

• RCLs based on value restriction comprise all solution components l for which
h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l. (α is a parameter of the algorithm.)

• Possible extension: reactive GRASP (e.g., dynamic adaptation of α
during search)

24



Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASPExample: Squeaky Wheel

Key idea: solutions can reveal problem structure which maybe worth to exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create troubles.

Squeaky Wheel
• Constructor: greedy algorithm on a sequence of problem elements.
• Analyzer: assign a penalty to problem elements that contribute to flaws in the current solution.
• Prioritizer: uses the penalties to modify the previous sequence of problem elements. Elements
with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other

25


	Bounded backtrack
	Limited Discrepancy Search
	Random Restart
	Rollout/Pilot Method
	Beam Search
	Iterated Greedy
	GRASP

