DM865 – Spring 2018 Heuristics and Approximation Algorithms

Complexity

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Complexity Hierarchy

Outline

1. Complexity Hierarchy

3

Reduction

A search problem Π' is (polynomially) reducible to a search problem Π ($\Pi' \longrightarrow \Pi$) if there exists an algorithm $\mathcal A$ that solves Π' by using a hypothetical subroutine $\mathcal S$ for Π and except for $\mathcal S$ everything runs in polynomial time. [Garey and Johnson, 1979]

NP-hard

A search problem Π is NP-hard if

- 1. it is in NP
- 2. there exists some NP-complete problem Π' that reduces to Π

In scheduling, complexity hierarchies describe relationships between different problems.

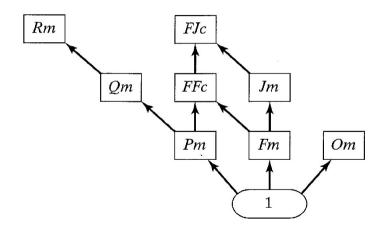
Ex:
$$1||\sum C_j \longrightarrow 1||\sum w_j C_j$$

Interest in characterizing the borderline: polynomial vs NP-hard problems

Problems Involving Numbers

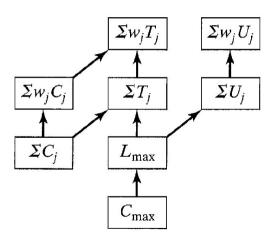
Partition

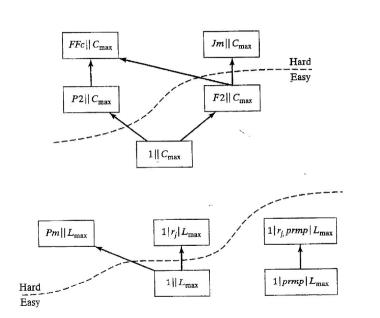
- **Input:** finite set A and a size $s(a) \in \mathbf{Z}^+$ for each $a \in A$
- **Question:** is there a subset $A' \subseteq A$ such that


$$\sum_{a\in A'} s(a) = \sum_{a\in A-A'} s(a)?$$

3-Partition

- Input: set A of 3m elements, a bound $B \in \mathbf{Z}^+$, and a size $s(a) \in \mathbf{Z}^+$ for each $a \in A$ such that B/4 < s(a) < B/2 and such that $\sum_{a \in A} s(a) = mB$
- Question: can A be partitioned into m disjoint sets A_1, \ldots, A_m such that for $1 \le i \le m$, $\sum_{a \in A_i} s(a) = B$ (note that each A_i must therefore contain exactly three elements from A)?


5


Elementary reductions for machine environment

5

Elementary reductions for regular objective functions

Polynomial time solvable problems

SINGLE MACHINE	PARALLEL MACHINES	SHOPS
$\begin{bmatrix} 1 \mid r_j, p_j = 1, prec \mid \sum C_j \\ 1 \mid r_j, prmp \mid \sum C_j \end{bmatrix}$	$ P2 \mid p_j = 1, prec \mid L_{\text{max}} $ $ P2 \mid p_i = 1, prec \mid \sum_i C_i $	$O2 \mid\mid C_{\max}$
$1 \mid tree \mid \sum w_j C_j$		$Om \mid r_j, prmp \mid L_{\max}$
$1 \mid prec \mid L_{max}$	$ Pm p_j = 1, tree C_{max}$ $ Pm prmp, tree C_{max}$	$F2 \mid block \mid C_{max}$
$1 \mid r_j, prmp, prec \mid L_{\max}$	$ Pm p_j = 1, outtree \sum_{max} C_j$ $ Pm p_j = 1, intree L_{max}$	$F2 \mid nwt \mid C_{\max}$
$1 \mid\mid \sum U_j$	$Pm \mid p_j = 1, thtree \mid L_{max}$	$Fm \mid p_{ij} = p_j \mid \sum C_j$
$ \begin{vmatrix} 1 \mid r_j, prmp \mid \sum U_j \\ 1 \mid r_j, p_j = 1 \mid \sum w_j U_j \end{vmatrix} $	$Q2 \mid prmp, prec \mid C_{max}$	
$\begin{vmatrix} 1 & & r_i, p_i = 1 & & \sum w_i T_i \end{vmatrix}$	$Q2 \mid r_j, prmp, prec \mid L_{\max}$	$J2 \mid\mid C_{\max}$
$\begin{bmatrix} 1 + r_j, p_j - 1 + \sum w_j I_j \end{bmatrix}$	$Qm \mid r_j, p_j = 1 \mid C_{\text{max}}$	J2 Cmax
	$ \begin{aligned} Qm p_j &= 1, M_j \mid C_{\text{max}} \\ Qm r_j, p_j &= 1 \mid \sum C_j \end{aligned} $	
	$Qm \mid prmp \mid \sum C_j$	
	$ \begin{aligned} Qm p_j &= 1 \mid \sum w_j C_j \\ Qm p_j &= 1 \mid L_{\text{max}} \end{aligned} $	
	$ \begin{vmatrix} Qm \mid p_j - 1 \mid \sum w_j C_j \\ Qm \mid p_j = 1 \mid \sum w_j T_j $	
	$ Rm \sum C_i$	
	$Rm \mid r_j, prmp \mid L_{\max}$	

NP-hard problems in the ordinary sense

SINGLE MACHINE	PARALLEL MACHINES	SHOPS
$1 \parallel \sum w_j U_j (*)$ $1 \mid r_j, prmp \mid \sum w_j U_j (*)$ $1 \parallel \sum T_j (*)$	$P2 \mid\mid C_{\max} (*)$ $P2 \mid\mid r_{j}, prmp \mid \sum C_{j}$ $P2 \mid\mid \sum w_{j}C_{j} (*)$ $P2 \mid\mid r_{j}, prmp \mid \sum U_{j}$ $Pm \mid\mid prmp \mid \sum w_{j}C_{j}$ $Qm \mid\mid \sum w_{j}C_{j} (*)$ $Rm \mid\mid r_{j} \mid C_{\max} (*)$ $Rm \mid\mid \sum w_{j}U_{j} (*)$ $Rm \mid\mid prmp \mid \sum w_{j}U_{j}$	$O2 \mid prmp \mid \sum C_j$ $O3 \mid \mid C_{max}$ $O3 \mid prmp \mid \sum w_j U_j$

Strongly NP-hard problems

SINGLE MACHINE	PARALLEL MACHINES	SHOPS
$\begin{aligned} &1 \mid r_{j} \mid \sum C_{j} \\ &1 \mid prec \mid \sum C_{j} \\ &1 \mid prec \mid \sum C_{j} \\ &1 \mid r_{j}, prmp, tree \mid \sum C_{j} \\ &1 \mid r_{j}, prmp \mid \sum w_{j}C_{j} \\ &1 \mid r_{j}, p_{j} = 1, tree \mid \sum w_{j}C_{j} \\ &1 \mid p_{j} = 1, prec \mid \sum w_{j}C_{j} \\ &1 \mid r_{j} \mid L_{\max} \\ &1 \mid r_{j} \mid \sum U_{j} \\ &1 \mid p_{j} = 1, chains \mid \sum U_{j} \\ &1 \mid p_{j} = 1, chains \mid \sum T_{j} \\ &1 \mid p_{j} = 1, chains \mid \sum T_{j} \\ &1 \mid \sum w_{j}T_{j} \end{aligned}$	$P2 \mid chains \mid C_{\max}$ $P2 \mid chains \mid \sum C_j$ $P2 \mid prmp, chains \mid \sum C_j$ $P2 \mid p_j = 1, tree \mid \sum w_j C_j$ $R2 \mid prmp, chains \mid C_{\max}$	$F2 \mid r_j \mid C_{\text{max}}$ $F2 \mid r_j, prmp \mid C_{\text{max}}$ $F2 \mid \sum C_j$ $F2 \mid prmp \mid \sum C_j$ $F2 \mid prmp \mid L_{\text{max}}$ $F3 \mid C_{\text{max}}$ $F3 \mid prmp \mid C_{\text{max}}$ $F3 \mid prmp \mid C_{\text{max}}$ $F3 \mid prmp \mid C_{\text{max}}$ $G2 \mid \sum C_j$ $G2 \mid \sum C_j$ $G2 \mid prmp \mid \sum w_j C_j$ $G2 \mid L_{\text{max}}$ $G3 \mid prmp \mid \sum C_j$

Web Archive

Complexity results for scheduling problems by Peter Brucker and Sigrid Knust http://www.informatik.uni-osnabrueck.de/knust/class/