DM865 — Spring 2018

Heuristics and Approximation Algorithms

Single Machine Problems

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Dispatching Rules
Single Machine Algorithms
Local Searc|

O utl i ne Parallel Machine Models

1. Dispatching Rules

2. Single Machine Algorithms

3. Local Search

4. Parallel Machine Models
CPM/PERT

Dispatching Rules
Single Machine Algorithms
Local Searc

O Utl i ne Parallel Machine Models

1. Dispatching Rules

Dispatching rules

Distinguish static and dynamic rules.

e Service in random order (SIRO)

o Earliest release date first (ERD=FIFO)
e tends to min variations in waiting time

e Earliest due date (EDD)

e Minimal slack first (MS)

e j* = argmin;{max(d; — p; — t,0)}.
e tends to min due date objectives (T,L)

Dispatching Rules

Single Machine Algorithms
Local Search

Parallel Machine Models

(Weighted) shortest processing time first (WSPT)
o j* = argmax;{w;/pj}.
e tends to min > w;C; and max work in progress

Longest processing time first (LPT)
e balance work load over parallel machines

Shortest setup time first (SST)
e tends to min C,. and max throughput

Least flexible job first (LFJ)
o eligibility constraints

Dispatching Rules

Dispatching Rules

e Critical path (CP)
o first job in the CP

e tends to min Cpax
o Largest number of successors (LNS)

e Shortest queue at the next operation (SQNO)
e tends to min idleness of machines

Dispatching Rules

Dispatching Rules in Scheduling

RULE DATA OBJECTIVES
Rules Dependent ERD rj Variance in Throughput Times
on Release Dates EDD d; Maximum Lateness
and Due Dates MS d; Maximum Lateness
LPT pj Load Balancing over Parallel Machines
Rules Dependent SPT pj Sum of Completion Times, WIP
on Processing WSPT pj, w; Weighted Sum of Completion Times, WIP
Times CP pj, prec Makespan
LNS pj, prec Makespan
SIRO - Ease of Implementation
Miscellaneous SST Sk Makespan and Throughput
LFJ M; Makespan and Throughput

SQNO

J

Machine Idleness

When dispatching rules are optimal?

Dispatching Rules

Single Machine Algorithms
Local Search

Parallel Machine Models

RULE ENVIRONMENT
1 SIRO — —
2 ERD 7 1]ry | Var(32(Cy —ry)/n)
3 EDD d; LI Limax
4 MS d; LI Limax
5 SPT P; Pm || . Cyi Fm | py=p; | 2.C)
6 WSPT w;, p; Pm || Zw;C;
7 LPT P Pt || Crax
8 SPT-LPT p; Fm | block, pij = p; | Cinax
9 CP Py, prec Pm | prec | Crnux
10 LNS p;j. prec Pm | prec | Cpux
11 SST Si L1 i | Conax
12 LFJ MJ Pmle|Cmax
13 LAPT Pij 02 || Conax
14 sQ — Pm || 3C;
15 SQNO — Jm ||y

Dispatching Rules
Single Machine Algorithms
Local Search

Composite dispatching rules Paralll Machine Models

Why composite rules?
e Example: 1]| > w;T;:

o WSPT, optimal if due dates are zero
e EDD, optimal if due dates are loose

e MS, tends to minimize T

» The efficacy of the rules depends on instance factors

Dispatching Rules

Single Machine Algorithms
Local Search

Parallel Machine Models

Instance characterization

e Job attributes: {weight, processing time, due date, release date}

e Machine attributes: {speed, num. of jobs waiting, num. of jobs eligible}

e Possible instance factors:

* 1[XwT;
d .
0, =1-— o (due date tightness)
dmax dmin
02 = — (due date range)

o 1]si| > wT;

(61, 62 with estimated Corox = Z pj + n3)
j=1

03 = (set up time severity)

il vl

10

Dispatching Rules

Single Machine Algorithms

Local Search
Parallel Machine Models

e 1||>" w;T;, dynamic apparent tardiness cost (ATC)

L) = % exp (_ max(d) R t,O))

e 1|sj| > w;Tj, dynamic apparent tardiness cost with setups (ATCS)

W max(d; — p; — t,0) —Sjk
hi(t, 1) = =L ex (sl =
/i(t, 1) pi p Kip p Ky3

after job / has finished.

11

Outline

2. Single Machine Algorithms

Dispatching Rules

Single Machine Algorithms
Local Searc

Parallel Machine Models

14

Single Machine Algorithms

Outlook

11| > w;C : weighted shortest processing time first is optimal
L[] >2; Uj : Moore’s algorithm
1| prec| L.y : Lawler's algorithm, backward dynamic programming in O(n?) [Lawler, 1973]
1] > hi(G) : dynamic programming in O(2")
1] > w;T; : local search and dynasearch
1|1, (prec) | Lmax : branch and bound

1|sjk | Crax @ in the special case, Gilmore and Gomory algorithm
optimal in O(n?)

1] > w;T; : column generation approaches

15

Single Machine Algorithms

Summary

Single Machine Models:

e C,.x Is sequence independent

e if ; = 0 and h; is monotone non decreasing in C; then optimal schedule is nondelay and has
no preemption.

16

Dispatching Rules
Single Machine Algorithms
Local Sear

1 | | E I/VJC:J Bl Wthine Models

[Total weighted completion time]

Theorem
The weighted shortest processing time first (WSPT) rule is optimal. J

Extensions to 1 | prec | >~ w;C;

e in the general case strongly NP-hard

e chain precedences:
process first chain with highest p-factor up to, and included, job with highest p-factor.

e polytime algorithm also for tree and sp-graph precedences

17

Extensions to 1 | r;, prmp | > w;

e in the general case strongly NP-hard
e preemptive version of the WSPT if equal weights

e however, 1| rj| > w;C; is strongly NP-hard

Single Machine Algorithms

18

INEDIRY/

[Number of tardy jobs]

e [Moore, 1968] algorithm in O(nlog n)

e Add jobs in increasing order of due dates

e If inclusion of job j* results in this job being completed late
discard the scheduled job k™ with the longest processing time

e 1| >, w;U; is a knapsack problem hence NP-hard

Single Machine Algorithms

19

Single Machine Algorithms

Dynamic programming

Procedure based on divide and conquer
Principle of optimality the completion of an optimal sequence of decisions must be optimal

e Break down the problem into stages at which the decisions take place

e Find a recurrence relation that takes us backward (forward) from one stage to the previous
(next)

o Typical technique: labelling with dominance criteria

(In scheduling, backward procedure feasible only if the makespan is schedule independent, eg, single
machine problems without setups, multiple machines problems with identical processing times.)

20

Dispatching Rules
Single Machine Algorithms
Local Search

]_ | prec| hmax Parallel Machine Models

® Nmax = max{h1(C1), ho(G), ..., hy(C,)}, hj regular

e special case: 1| prec| L., [maximum lateness]

e solved by backward dynamic programming in O(n?) [Lawler, 1978]

J set of jobs already scheduled;
J¢ set of jobs still to schedule;
J' C J° set of schedulable jobs

Step 1: Set J =10, J={1,...,n} and J' the set of all jobs with no successor

Step 2: Select j* such that j* = argminje {h; (3, pe) 1
add j* to J; remove j* from J<; update J'.

Step 3: If J¢ is empty then stop, otherwise go to Step 2.

e For 1 || Lyax Earliest Due Date first

a 1|..117 e tmetand ctrAanalhy NID lkhAavA

21

Dispatching Rules
Single Machine Algorithms
Local Search

S umma I’y Parallel Machine Models

11| > w;C; : weighted shortest processing time first is optimal
L[| >2; Uj : Moore’s algorithm
1| prec| L.y : Lawler's algorithm, backward dynamic programming in O(n?) [Lawler, 1973]
111> hi(G) : dynamic programming in O(2")
1] rj, (prec) | Lmax : branch and bound
1| > w;T; : local search and dynasearch
1| > w;T; : IP formulations, column generation approaches

1] Sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n?)

Multicriteria

22

Single Machine Algorithms

1| 22 hi(G)

A lot of work doneon 1 || > w;T;
[single-machine total weighted tardiness]

e 1|| > T;is hard in ordinary sense, hence admits a pseudo polynomial algorithm (dynamic
programming in O(n*>" p;))

e 1|| > w;T; strongly NP-hard (reduction from 3-partition)

23

Dispatching Rules
Single Machine Algorithms

Local Search
]. | | Z h_] (C}') Parallel Machine Models
e generalization of) w; T; hence strongly NP-hard

e (forward) dynamic programming algorithm O(2")

J set of jobs already scheduled;
V(J) = X jes hi(G)
Step 1: Set J =10, V(j) = hj(p;), j=1,...,n

Step 2: V(J) = minjes (V(J = (1) + b (Xe, pr))

Step 3: If J={1,2,...,n} then V({1,2,...,n}) is optimum,
otherwise go to Step 2.

24

Outline

3. Local Search

Dispatching Rules

Single Machine Algorithms

Local Search
Parallel Machine Models

26

1| 22 hi(G)

Local search

1.

o o~ wN

search space (solution representation)
initial solution

neghborhood function

evaluation function

step function

termination predicte

Dispatching Rules

Single Machine Algorithms

Local Search
Parallel Machine Models

Efficient implementations

A.
B.

Incremental updates

Neighborhood pruning

27

]_ | | z hJ(Cl) Local Search

Neighborhood updates and pruning

e Interchange neigh.: size (5) and O(|/ — j|) evaluation each
o first-improvement: 7;,
pr; < px, for improvements, w;T; + wy Tx must decrease because jobs in 7;
can only increase their tardiness.

pr; > Pr, possible use of auxiliary data structure to speed up the computation
o best-improvement: 7, 7

pr; < Py for improvements, w; Tj+wj T, must decrease at least as the best interchange
ound so far because jobs in 7, ..., T, can only increase their tardiness.
found so far b job g , ly their tard

pr; > px, possible use of auxiliary data structure to speed up the computation
e Swap: size n — 1 and O(1) evaluation each
e Insert: size (n — 1)? and O(|i — j|) evaluation each

But possible to speed up with systematic examination by means of swaps: an interchange is
equivalent to |/ — j| swaps hence overall examination takes O(n?)

Dispatching Rules

Single Machine Algorithms

Local Search
Parallel Machine Models

Dynasearch

e two interchanges d; and ¢, are independent
if max{j, k} < min{/, m} or min{/, k} > max{/, m};

e the dynasearch neighborhood is obtained by a series of independent interchanges;
e it has size 277! — 1 (the number of subsets of n — 1 pairwise jobs);
e but a best move can be found in O(n®) searched by dynamic programming;

e it yields in average better results than the interchange neighborhood alone.

29

Dispatching Rules

Single Machine Algorithms
Local Search

Parallel Machine Models

Table 1 Data for the Problem Instance

Job j 1 2 3 4 5 6
Processing time p; 3 1 1 5 1 5
Weight w; 3 5 1 1 4 4
Due date d; 1 5 3 1 3 1

Table2 Swaps Made by Best-Improve Descent

Total Weighted

Iteration Current Sequence Tardiness
123456 109

1 123546 920

2 123564 75

3 523164 70

Table3 Dynasearch Swaps

Total Weighted

Iteration Current Sequence Tardiness
123456 109

1 132546 89

2 152364 68

3 512364 67

30

state (k,)

7 is the partial sequence at state (k,7) that has min > wT

7k is obtained from state (/,)

{appending job (k) after (i)

Dispatching Rules

Single Machine Algorithms
Local Search

Parallel Machine Models

i=k—-1

appending job 7(k) and interchanging w(i + 1) and m(k) 0<i< k-1

F(mo) =0; F(m) = Waqw) (Pr(1) — dr(n))
F(mk—1) 4 Wa(k) (Cr) — dﬂ'(k))+ :

min {F(m) + Wa(k) (Criy + Pr(k) — dw(k))+ +

F (i) = min { 1Si<k=1

k—1
+ 22 Wa()) (Cwo) + Pr(iy

AW (i1) (Crghy —

driivn)) "}

+
Pr(i+1) — dr(j)) +

31

Local Search

e The best choice is computed by recursion in O(n*) and the optimal series of interchanges for
F(m,) is found by backtrack.

o Local search with dynasearch neighborhood starts from an initial sequence, generated by
Apparent Tardiness Cost, and at each iteration applies the best dynasearch move, until no
improvement is possible (that is, F(7},) = F(Wff*l)), for iteration t).

e Speedups:
e pruning with considerations on p () and p. (1)
e maintainig a string of late, no late jobs

o hy largest index s.t. 7"V (k) = 72 (k) for k = 1,... h, then F(x\"") = F(x\""?)) for
k=1,...,h; and at iter t no need to consider | < h;.

32

Local Search

Dynasearch, refinements:

e [Grosso et al. 2004] add insertion moves to interchanges.

e [Ergun and Orlin 2006] show that dynasearch neighborhood can be searched in O(n?).

33

Local Search

Performance:

e exact solution via branch and bound feasible up to 40 jobs
[Potts and Wassenhove, Oper. Res., 1985]

e exact solution via time-indexed integer programming formulation used to lower bound in
branch and bound solves instances of 100 jobs in 4-9 hours [Pan and Shi, Math. Progm., 2007]

e dynasearch: results reported for 100 jobs within a 0.005% gap from optimum in less than 3
seconds [Grosso et al., Oper. Res. Lett., 2004]

34

Summary

L[] 22w

1] prec| Lmax

L[] 22 hi(G)

Dispatching Rules

Single Machine Algorithms
Local Search

Parallel Machine Models

. weighted shortest processing time first is optimal

1||ZjUj:

Moore's algorithm

: Lawler’s algorithm, backward dynamic programming in O(n?) [Lawler, 1973]
: dynamic programming in O(2")
1] S wT;

local search and dynasearch

1] rj,(prec) | Lmax : branch and bound

L[| X wT;

: column generation approaches

35

Outline

4. Parallel Machine Models
CPM/PERT

Dispatching Rules

Single Machine Algorithms
Local Search

Parallel Machine Models

36

Pm || Chax

(without preemption)

Poo | prec | Cax CPM

Pm | | Cpax List scheduling, approximation ratio: 2 — %

1

Pm || Cpax LPT heuristic, approximation ratio: % T

Dispatching Rules

Single Machine Algorithms
Local Search

Parallel Machine Models

Rm || >_; w;C; unrelated machines, local search with indirect solution representation, SWPT is

optimalon 1| > . w;C;.

37

Project Planning — Critical Path Method Parallel Machine Models

Milwaukee General Hospital Project

Immediate
Activity Description Predecessor | pyration
A Build internal components - 2
B Modify roof and floor - 3
C Construct collection stack A 2
D Pour concrete and install frame A.B 4
E Build high-temperature burner (5 4
F Install pollution control system € 3
G Install air pollution device D.E 5
H Inspect and test F.G 2

Dispatching Rules

Single Machine Algorithms

Local Search

Project Planning — Critical Path Method Parallel Machine Models

Whenever a job has been completed, start all jobs whose predecessors have been completed.

Forward procedure
e EST; earliest starting time
e EFT; earliest finishing time
Backward procedure
o [ST; latest starting time
e LFT; latest finishing time

EST; = max EFT; LCT; = min LSTy
k:k—sj kij—k

EST; < LST; slack job
EST; = LST; critical job

40

Project Planning — Critical Path Method Parallel Machine Models

Milwaukee General Hospital Project

Immediate
Activity Description Predecessor pyration EST EFT LST LFT Slack
A Build internal components - 2 0 2 0 2 0
B Maodify roof and floor - 3 o] 3 1 4 1
C Construct collection stack A 2 2 4 2 4 0
D Pour concrete and install frame AB 4 3 7 6 10 3
E Build high-temperature burner C 4 4 8 =1 10 2
F Install pollution control system C 3 4 7 10 13 =1
G Install air pollution device D.E 5 8 13 8 13 o]
H Inspect and test F.G 2 13 15 13 15 0

Expected project duration 15

Dispatching Rules
Single Machine Algorithms
Local Search

Project Planning — Critical Path Method Parallel Machine Models

Activity

Gantt Chart

Il Expected Duration
[] slack

16

15

14

7 8 g 10 11 12 13

Time Period

0 1 2 3 4 5 <]

41

Project Planning — Program Evaluation and Review peii Machine mods

e o 2 Expecte Time Activity
Milwaukee General Hospital Projec d Estimates | Varianc
Immediate
Activity Description Predecessor nigm+bjt EST EFT LST LFT Slack a m b [((b-a)s6)~2
A Build internal components - 2 o] 2 0 2 o] IS 0.1111
B Modify roof and floor - 3 0 3 1 4 1 2 3 4 01111
€ Construct collection stack A 2 2 4 2 4 0 (RS 0.1111
D 'our concrete and install frame AB 4 3 7 4 8 1 2 4 B 04444
E 3uild high-temperature burne C 4 4 8 4 8 0 1 4 7 1.0000
F nstall pollution control systerr C 3 4 7 10 13 6 1 2 § 17778
G Install air pollution device D.E 5 8 13 8 13 0 S 1.7778
H Inspect and test F.G 2 13 15 13 15 0 2 0.1111

Expected project duration 15 Variance of project duration 3.1111

Dispatching Rules
Single Machine Algorithms

Project Planning — Program Evaluation and Review *

® a,,am,,a, parameters for optimistic, most likely and pessimistic times.

a;+ 4a, + a, a, — ay
W= ———" o=

6 6

independent events

duration project = critical path duration

E[Dp] = Z E[Xi] o?[Dp] = Z a?[Xi]

Dp is Gaussian

ocal Search

rallel Machine Models

43

	Dispatching Rules
	Single Machine Algorithms
	Local Search
	Parallel Machine Models
	CPM/PERT

