Abstract:

An external memory data structure is presented for maintaining a dynamic set of N two-dimensional points under the insertion and deletion of points, and supporting 3-sided range reporting queries and top-k queries, where top-k queries report the k points with highest y-value within a given x-range. For any constant $0 < \varepsilon \leq \frac{1}{2}$, a data structure is constructed that supports updates in amortized $O\left(\frac{1}{\varepsilon} \log B \log N\right)$ IOs and queries in amortized $O\left(\frac{1}{\varepsilon} \log B \log N + K/B\right)$ IOs, where B is the external memory block size, and K is the size of the output to the query (for top-k queries K is the minimum of k and the number of points in the query interval). The data structure uses linear space. The update bound is a significant factor $B^{1-\varepsilon}$ improvement over the previous best update bounds for the two query problems, while staying within the same query and space bounds.