DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE UNIVERSITY OF SOUTHERN DENMARK, ODENSE

COMPUTER SCIENCE COLLOQUIUM

Matching and Edge-connectivity in Graphs with given Maximum Degree

Michael A. Henning
Department of Mathematics and Applied Mathematics
University of Johannesburg, South Africa

Wednesday, 25 September, 2019 at 14:15 U175

Abstract:

In this talk, we determine tight lower bound on the matching number of a graph with given maximum degree and edge-connectivity in terms of its order and size. For a graph G of order n, size m, matching number $\alpha'(G)$, edge-connectivity $\lambda(G) \geq \lambda \geq 1$ and maximum degree $k \geq \lambda$ we determine best possible constants $a_{k,\lambda}$, $b_{k,\lambda}$ and $c_{k,\lambda}$ (depending only on k and λ) such that $\alpha'(G) \geq a_{k,\lambda} \cdot nb_{k,\lambda} \cdot m - c_{k,\lambda}$. Further if k and λ have different parities, we determine best possible constants $d_{k,\lambda}$, $e_{k,\lambda}$ and $f_{k,\lambda}$ (depending only on k and λ) such that $\alpha'(G) \geq d_{k,\lambda} \cdot m - e_{k,\lambda} \cdot n - f_{k,\lambda}$. We also show that $\alpha'(G) \geq n - \frac{1}{\lambda}m$ unless $\alpha'(G) = \frac{1}{2}(n-1)$ in which case $\alpha'(G) \geq n - \frac{1}{\lambda}m - \frac{1}{2}$. We prove that the above bounds are tight for essentially all densities of graphs.

Host: Anders Yeo