Clustering Evaluation in High-Dimensional Data

Published in: M. Emre Celebi and K. Aydin, editors, Unsupervised Learning Algorithms, Springer, 2016

Nenad Tomašev¹

Miloš Radovanović²

1 (Former) Artificial Intelligence Laboratory Jožef Stefan Institute, Ljubljana, Slovenia

² Department of Mathematics and Informatics Faculty of Sciences, University of Novi Sad, Serbia

- Introduction
 - Curse of dimensionality, clustering quality indexes, distance concentration, hubness
 - Clustering quality indexes: an overview
 - Internal indexes
 - External indexes
 - Clustering evaluation in many dimensions
 - Experimental protocol
 - Sensitivity to increasing dimensionality
 - Sensitivity of the average quality assessment
 - Stability of quality assessment
 - Influence of hubs
 - Conclusion and perspectives

The Curse of Dimensionality

- The curse of dimensionality refers to different properties of highdimensional data:
 - Sparsity (data sparsely populating the space)
 - Irrelevant features
 - "Strange" behavior of distances (distance concentration)
 - Hubness (hubs and orphans in *k*-NN graphs)
 - **O** ...
- The above are known to affect many techniques for:
 - Search and indexing
 - Classification
 - Clustering
 - **0** ...
- Effects of dimensionality on clustering <u>evaluation</u> received little attention

Clustering Quality Indexes

- Internal
 - Do not rely on outside information
 - Usually measure cluster compactness and separation between clusters, using distances (directly or indirectly)
- External
 - Based on some ground truth about the optimal partition of the data

Clustering Evaluation and Dimensionality

- One can expect internal clustering quality indexes to be affected by dimensionality
 - Distance distributions change (distance concentration)
 - Hubness appears (which indicates change in behavior of point centrality)
 - **O** ...
- Stability of indexes w.r.t. dimensionality very important when sampling feature subspaces
- We review common clustering quality indexes
 - Focus on internal
- Then, we evaluate the sensitivity (bias) and stability (variance) of clustering quality indexes with increasing data dimensionality
 - Study on synthetic data

Distance Concentration

- Ratio between a measure of spread and a measure of magnitude of distances converges to 0 as dimensionality increases
- For distance distribution D:
 - Relative Contrast RC(D) = (max(D) min(D)) / min(D)
 - Relative Variance RV(D) = Std(D) / E(D)
- D can refer to distances to a particular point (conveniently 0) or pairwise distances

Distance Concentration

• Theorem [François, TKDE 2007]: For d-dimensional random variable \mathbf{X}_d with i.i.d. components,

$$\lim_{d \to \infty} \frac{\sqrt{\operatorname{Var}(\|\mathbf{X}_d\|_p)}}{\operatorname{E}(\|\mathbf{X}_d\|_p)} = 0$$

Hubness

[Radovanović et al. ICML'09, Radovanović et al. JMLR'10]

- $N_k(x)$, the number of **k-occurrences** of point $x \in \mathbb{R}^d$, is the number of times x occurs among k nearest neighbors of all other points in a data set
 - \circ $N_k(x)$ is the in-degree of node x in the kNN digraph
- Observed that the distribution of N_k can become skewed, resulting in hubs points with high N_k , and anti-hubs points with low N_k
 - Music retrieval [Aucouturier & Pachet PR'07]
 - Speaker verification ("Doddington zoo") [Doddington et al. ICSLP'98]
 - Fingerprint identification [Hicklin et al. NIST'05]
 - Image retrieval [Jegou et al. CVPR'07 (talk), PAMI'10]
- Cause remained unknown, attributed to the specifics of data or algorithms

EDML Workshop, SDM'19, Calgary

Hubness in Real Data

- Important factors for real data
 - 1) Dependent attributes
 - 2) Grouping (clustering)
- 50 data sets
 - From well known repositories (UCI, Kent Ridge)
 - Euclidean and cosine, as appropriate
- Conclusions [Radovanović et al. JMLR'10]:
 - 1) Hubness depends on intrinsic dimensionality
 - 2) Hubs are in proximity of cluster centers

- Introduction
 - Curse of dimensionality, clustering quality indexes, distance concentration, hubness
- Clustering quality indexes: an overview
 - Internal indexes
 - External indexes
 - Clustering evaluation in many dimensions
 - Experimental protocol
 - Sensitivity to increasing dimensionality
 - Sensitivity of the average quality assessment
 - Stability of quality assessment
 - Influence of hubs
 - Conclusion and perspectives

Clustering Quality Indexes: An Overview

Notation:

```
N – no. of data points
```

$$T = \{x_1, x_2, ..., x_N\}$$
 data set

d – dimensionality

K- no. of clusters

 $\{C_1, C_2, ..., C_K\}$ – partition of data set T into disjoint clusters, $UC_i = T$

 \bar{x} – data-set center

 \bar{x}_i – center of cluster i

k – neighborhood size

Clustering Quality Indexes: An Overview

- Internal indexes (17)
 - Silhouette, simplified silhouette, Dunn, Davies-Bouldin, isolation, C index, C√K index, Calinski-Harabasz, Goodman-Kruskal, G₊ index, Hubert's Γ statistic, McClain-Rao, PBM, point-biserial, RS, SD, Tau
- External indexes (3)
 - Rand, adjusted Rand, Fowlkes-Mallows

- Introduction
 - Curse of dimensionality, clustering quality indexes, distance concentration, hubness
- Clustering quality indexes: an overview
 - Internal indexes
 - External indexes
- Clustering evaluation in many dimensions
 - Experimental protocol
 - Sensitivity to increasing dimensionality
 - Sensitivity of the average quality assessment
 - Stability of quality assessment
 - Influence of hubs
- Conclusion and perspectives

Silhouette Index

• For each point $x_p \in C_i$:

[Rousseeuw 1987]

 $a_{i,p}$ – avg. distance to other points in cluster i (within cluster distance)

 $b_{i,p}$ – minimal avg. distance to other points from other clusters (between cluster distance)

$$SIL(x_p) = \frac{a_{i,p} - b_{i,p}}{\max a_{i,p}, b_{i,p}}$$

$$SIL = \frac{1}{N} \sum_{p=1}^{N} SIL(x_p)$$

Isolation Index

[Pauwels & Frederix 1999]

- Average proportion of neighbors in the data that agree with the query point in terms of their cluster label
- Local neighborhood disagreement ratio for point p:

$$\delta_{p,k} = \frac{|x_q \in D_k(x_p): (\not\exists C_i: x_p, x_q \in C_i)|}{k}$$

Isolation index for the data set:

IS =
$$\frac{1}{N} \sum_{p=1}^{N} (1 - \delta_{p,k})$$

C√K Index

[Ratkowsky & Lance 1978]

- Expresses contributions of individual features to within-cluster distances
- Contribution of feature *l* to the avg. overall divergence from data-set center:

$$SST_l = \sum_{p=1}^{N} ||x_p^l - \bar{x}^l||^2$$

Contribution of feature l to (inverted) within-cluster distances:

$$SSB_{l} = SST_{l} - \sum_{i=1}^{K} \sum_{x_{p} \in C_{i}} (x_{p}^{l} - \bar{x_{i}}^{l})^{2}$$

Final index:

$$C\sqrt{K}Ind = \frac{1}{d \cdot \sqrt{K}} \sum_{l=1}^{d} \sqrt{\frac{SSB_l}{SST_l}}$$

Goodman-Kruskal Index

[Goodman & Kruskal 1954, Baker & Hubert 1975]

- A pair of distances is concordant if the distance between objects from the same cluster is lower than the distance between objects from different clusters
- A pair of distances is discordant if ... higher ...
- S_+ no. of concordant distance pairs in the data w.r.t. the partitioning induced by the clustering
- S_{-} no. of discordant distance pairs

$$GK = \frac{S_{+} - S_{-}}{S_{+} + S_{-}}$$

G₊ Index

[Rohlf 1974]

- Takes into account only discordant distance pairs
- No. of data point pairs: $t = \frac{N(N-1)}{2}$
- Count of discordant distance pairs normalized by the total number of distance comparisons:

$$G_+ = \frac{2S_-}{t(t-1)}$$

Lower is better, so we use the complement form:

$$\bar{G}_{+} = 1 - G_{+}$$

Tau Index

[Rohlf 1974, Milligan 1981]

- Correlation between the distance matrix of the data and a binary matrix corresponding to whether pairs of points belong to the same cluster or not
- Can be expressed by concordance and discordance
- $t_{bw} = {b_d \choose 2} + {w_d \choose 2}$ no. of distance pairs that can not be concordant or discordant since they belong to same distance type
 - \circ b_d no. of between-cluster pairs
 - \circ w_d no. of within-cluster pairs

$$\tau = \frac{S_{+} - S_{-}}{\left(\frac{t(t-1)}{2} - t_{bw}\right) \frac{t(t-1)}{2}}$$

- Introduction
 - Curse of dimensionality, clustering quality indexes, distance concentration, hubness
- Clustering quality indexes: an overview
 - Internal indexes
 - External indexes
- Clustering evaluation in many dimensions
 - Experimental protocol
 - Sensitivity to increasing dimensionality
 - Sensitivity of the average quality assessment
 - Stability of quality assessment
 - Influence of hubs
- Conclusion and perspectives

Rand & Adjusted Rand

No. of pairs of points:

[Rand 1971]

- a − same cluster, same label (TP)
- \circ b same cluster, different labels (FP)
- o c − different cluster, same label (FN)
- o d − different cluster, different label (TN)

$$RAND = \frac{a+d}{a+b+c+d}$$

 Rand prefers larger number of clusters; adjusted version [Hubert & Arabie 1985]:

ARI =
$$\frac{\binom{N}{2}(a+d) - [(a+b)(a+c) + (c+d)(b+d)]}{\binom{N}{2}^2 - [(a+b)(a+c) + (c+d)(b+d)]}$$

Fowlkes-Mallows Index

[Fowlkes & Mallows 1983]

- prec = TP / (TP + FP)
- recall = TP / (TP + FN)

$$FM = \sqrt{prec \cdot recall}$$

- Introduction
 - Curse of dimensionality, clustering quality indexes, distance concentration, hubness
- Clustering quality indexes: an overview
 - Internal indexes
 - External indexes
- Clustering evaluation in many dimensions
 - Experimental protocol
 - Sensitivity to increasing dimensionality
 - Sensitivity of the average quality assessment
 - Stability of quality assessment
 - Influence of hubs
 - Conclusion and perspectives

Clustering Evaluation in Many Dimensions

- Most clustering quality indexes used as
 - Objective function to be optimized
 - Criterion to make comparisons between different cluster configurations
- Assumptions:
 - Same data set (i.e. feature representation)
 - Same distance measure
- It would be useful to lift the above assumptions

Clustering Evaluation in Many Dimensions

- Clustering quality indexes are all (slightly) different, thus ensembles can be used
 - Implicit assumption: constituent indexes are equally sensitive to varying conditions in data
- For cluster configuration selection over different feature subspaces, stability w.r.t. dimensionality and representation is a strict requirement
- Our aim: shed light on sensitivity of clustering quality indexes to data dimensionality

- Introduction
 - Curse of dimensionality, clustering quality indexes, distance concentration, hubness
- Clustering quality indexes: an overview
 - Internal indexes
 - External indexes
- Clustering evaluation in many dimensions
 - Experimental protocol
 - Sensitivity to increasing dimensionality
 - Sensitivity of the average quality assessment
 - Stability of quality assessment
 - Influence of hubs
- Conclusion and perspectives

39

Experimental Protocol

- Synthetic intrinsically high-dimensional data sets
- Each cluster i.d. Gaussian (diagonal Cov matrix)
- No. of points: N = 10000
- No. of clusters: K = 2, 3, 5, 10, 20
- Dimensionality: d between 2 and 300
- Two settings: separated and overlapping clusters
- Generated 10 data sets for each *K*, *d*, setting
- K-means repeated 10 times
- Euclidean distance
- Clustering indexes computed on ground truth and the partitions produced by K-means

- Introduction
 - Curse of dimensionality, clustering quality indexes, distance concentration, hubness
- Clustering quality indexes: an overview
 - Internal indexes
 - External indexes
- Clustering evaluation in many dimensions
 - Experimental protocol
 - Sensitivity to increasing dimensionality
 - Sensitivity of the average quality assessment
 - Stability of quality assessment
 - Influence of hubs
- Conclusion and perspectives

Sensitivity to Increasing Dimensionality

- Synthetic data generated from same distribution type, differing only in number of dimensions
- Robust clustering quality indexes should yield similar quality scores in all cases (on average)
- Indexes sensitive to dimensionality expected to display one or both of the following:
 - Different average scores across dimensionalities bias (sensitivity of the average quality assessment)
 - Large variance of quality predictions (instability of quality assessment)

Sensitivity of the Average Quality Assessment

Evaluation of ground truth

- Some indexes seem robust to increasing dimensionality:
 - C index, $C\sqrt{K}$ index, Calinski-Harabasz, G_{+} complement, isolation, RS, Tau
- Cluster configuration quality scores remain similar when the dimensionality is increased

Sensitivity of the Average Quality Assessment: C Index on Ground Truth

(a) Overlapping clusters

(b) Well-separated clusters

Sensitivity of the Average Quality Assessment: $C\sqrt{K}$ Index on Ground Truth

Sensitivity of the Average Quality Assessment: Calinski-Harabasz on Ground Truth

Sensitivity of the Average Quality Assessment: G_{+} Complement on Ground Truth

Sensitivity of the Average Quality Assessment

Evaluation of ground truth

- Other indexes are sensitive to increasing dimensionality:
 - Silhouette, simplified silhouette, Dunn, Davies-Bouldin, Hubert's statistic, PBM, point-biserial
- Cluster configuration quality scores increase when the dimensionality is increased

Sensitivity of the Average Quality Assessment: Silhouette on Ground Truth

Sensitivity of the Average Quality Assessment: Dunn on Ground Truth

Sensitivity of the Average Quality Assessment: PBM on Ground Truth

Sensitivity of the Average Quality Assessment

Evaluation of **K-means**

 Fowlkes-Mallows and adjusted Rand show that K-means was more successful in high dimensions w.r.t. the ground truth

Sensitivity of the Average Quality Assessment: Fowlkes-Mallows on K-Means

Sensitivity of the Average Quality Assessment: Adjusted Rand on *K*-Means

Sensitivity of the Average Quality Assessment

Evaluation of K-means

- However, the internal indexes behave in all sorts of ways, esp. in the overlapping cluster setting
- Some indexes robust w.r.t. ground truth, like G+ and Tau, still give consistent scores across dimensionalities
- Others that were robust, now give better scores to low-dimensional configurations ($C\sqrt{K}$, Calinski-Harabasz)
- Some indexes that increased with dimensionality on ground truth, now decrease (Silhouette)
- Point biserial and Hubert's statistic are U-shaped

Sensitivity of the Average Quality Assessment: $C\sqrt{K}$ and Calinski-Harabasz on K-Means

Overlapping Dataset, Clustering: Calinski-Harabasz

7000
6000
5000
4000
100
101
102
103
Dimensionality

(b) Calinski-Harabasz, Overlapping clusters

Sensitivity of the Average Quality Assessment: Point-biserial and Hubert's Statistic on *K*-Means

(a) Point-biserial, Overlapping clusters

(b) Hubert's-Statistic, Overlapping clusters

Stability of Quality Assessment

- Again, different indexes influenced in different ways in terms of score standard deviation
- Ground truth evaluation
- Point biserial: std increases in overlapping setting, decreases in separated setting
- PBM: std increases in both settings
- G_+ , Tau, isolation index: std relatively stable

Stability of Quality Assessment: Point Biserial on Ground Truth

10°

♦ · · 2 clusters · · · ■ · · 3 clusters · · · + · · 5 clusters · · • · · 10 clusters · · • · · 20 clusters

(b) Well-separated clusters

Stability of Quality Assessment: PBM on Ground Truth

2 Clusters 3 clusters 10 clusters 20 clust

Stability of Quality Assessment: G_{+} Complement on Ground Truth

Separated Dataset, Ground Truth: G+ Complement

0.06

0.05

0.01

0.02

0.01

101

102

103

Outline

- Introduction
 - Curse of dimensionality, clustering quality indexes, distance concentration, hubness
- Clustering quality indexes: an overview
 - Internal indexes
 - External indexes
- Clustering evaluation in many dimensions
 - Experimental protocol
 - Sensitivity to increasing dimensionality
 - Sensitivity of the average quality assessment
 - Stability of quality assessment
 - o Influence of hubs
- Conclusion and perspectives

- Hubs can cluster poorly by lowering between-cluster distance (esp. in cases when K is high)
- Demonstrated in our previous work for the Silhouette index [Radovanović et al. JMLR'10, Tomašev et al. TKDE'14]
- Here, we label points as hubs, regular points and anti-hubs by dividing the data set into three equal parts in the order of decreasing N_k score
- We express partial contributions of hubs, regular points, antihubs to various clustering indexes
- Whether hubs contribute substantially more or less than regular points for an index might affect the robustness of the index and its sensitivity to increasing dimensionality

(a) \bar{G}_+ index, Overlapping clusters

(b) Davies-Bouldin, Well-separated clusters

(a) McClain-Rao index, 2 clusters

(b) McClain-Rao index, 5 clusters

Outline

- Introduction
 - Curse of dimensionality, clustering quality indexes, distance concentration, hubness
- Clustering quality indexes: an overview
 - Internal indexes
 - External indexes
- Clustering evaluation in many dimensions
 - Experimental protocol
 - Sensitivity to increasing dimensionality
 - Sensitivity of the average quality assessment
 - Stability of quality assessment
 - Influence of hubs
- - Conclusion and perspectives

Conclusion and Perspectives

- Important to understand the behavior of clustering quality indexes in challenging contexts, like high dimensionality
- We showed that different indexes are influenced in different ways by increasing dimensionality
 - Average quality value (bias)
 - Stability of quality score (variance)
- What we have are initial results showing that selecting an appropriate index for high-dimensional data clustering is non-trivial and should be approached carefully
- For meaningful cross-index comparison, data dimensionality needs to be taken into account, otherwise results can simply be an artifact of dimensionality

Conclusion and Perspectives

- Hard to give general recommendations, but G₊, Tau and (to a lesser extent) isolation index showed best (in)sensitivity and stability across the board, w.r.t. dimensionality
- All indexes are sensitive to the number of clusters
- We used synthetic data, since it was easy to control the parameters
- A detailed study should be done on real data, by using repeated sub-sampling of larger high-dimensional datasets
 - Not many benchmark datasets with ground truth
- Better handling of hubs may result in better overall clustering quality: this could be incorporated into new/extended indexes

References

- M. Radovanović et al. Nearest neighbors in high-dimensional data: The emergence and influence of hubs. In Proc. 26th Int. Conf. on Machine Learning (ICML), pages 865– 872, 2009.
- M. Radovanović et al. Hubs in space: Popular nearest neighbors in high-dimensional data. Journal of Machine Learning Research 11:2487–2531, 2010.
- J.-J. Aucouturier and F. Pachet. A scale-free distribution of false positives for a large class of audio similarity measures. Pattern Recognition 41(1):272–284, 2007.
- G. Doddington et al. SHEEP, GOATS, LAMBS and WOLVES: A statistical analysis of speaker performance in the NIST 1998 speaker recognition evaluation. In Proc. 5th Int. Conf. on Spoken Language Processing (ICSLP), 1998. Paper 0608.
- A. Hicklin et al. The myth of goats: How many people have fingerprints that are hard to match? Internal Report 7271, National Institute of Standards and Technology (NIST), USA, 2005.
- H. Jegou et al. A contextual dissimilarity measure for accurate and efficient image search. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–8, 2007.
- H. Jegou et al. Accurate image search using the contextual dissimilarity measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1):2–11, 2010.
- D. François et al. The concentration of fractional distances. IEEE Transactions on Knowledge and Data Engineering 19(7):873–886, 2007.

- K. S. Beyer et al. When is "nearest neighbor" meaningful? In Proc. 7th Int. Conf. on Database Theory (ICDT), pages 217–235, 1999.
- C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In Proc. 27th ACM SIGMOD Int. Conf. on Management of Data, pages 37–46, 2001.
- P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20:53–65, 1987.
- L. Vendramin et al. Relative clustering validity criteria: A comparative overview. Statistical Analysis and Data Mining 3(4):209–235, 2010.
- J. C. Dunn. Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics 4(1):95–104, 1974.
- D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(2):224–227, 1979.
- E. J. Pauwels and G. Frederix. Cluster-based segmentation of natural scenes. In: Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV), vol. 2, pages 997–1002, 1999.
- L. Hubert and J. Schultz. Quadratic assignment as a general data-analysis strategy. British Journal of Mathematical and Statistical Psychologie 29:190–241, 1976.
- D. A. Ratkowsky and G. N. Lance. A criterion for determining the number of groups in a classification. Australian Computer Journal 10:115–117, 1978.
- T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Communications in Statistics, 3, no. 1:1–27, 1974.

- L. Goodman and W. Kruskal. Measures of associations for cross-validations. Journal of the American Statistical Association 49:732–764, 1954.
- F. B. Baker and L. J. Hubert. Measuring the power of hierarchical cluster analysis. Journal of the American Statistical Association 70:31–38, 1975.
- F. J. Rohlf. Methods of comparing classifications. Annual Review of Ecology and Systematics 5:101–113, 1974.
- M. Halkidi et al. On clustering validation techniques. Journal of Intelligent Information Systems 17(2-3):107–145, 2001.
- J. O. McClain and V. R. Rao. Clustisz: A program to test for the quality of clustering of a set of objects. Journal of Marketing Research 12:456–460, 1975.
- S. Bandyopadhyay et al. Validity index for crisp and fuzzy clusters. Pattern Recognition 37:487–501, 2004.
- G. W. Milligan. A Monte Carlo study of thirty internal criterion measures for cluster analysis. Psychometrika 46(2):187–199, 1981.
- S. C. Sharma. Applied Multivariate Techniques. John Wiley and Sons, 1996.
- M. G. Kendall and J. D. Gibbons, Rank Correlation Methods, London, UK, Edward Arnold, 1990.
- R. J. G. B. Campello and E. R. Hruschka, On comparing two sequences of numbers and its applications to clustering analysis. Information Sciences 179(8):1025–1039, 2009.
- W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66(336):846–850, 1971.

- L. Hubert and P. Arabie. Comparing partitions. Journal of Classification 2(1):193–218, 1985.
- E. B. Fowlkes and C. L. Mallows. A method for comparing two hierarchical clusterings. Journal of the American Statistical Association 78(383):553–569, 1983.
- N. Tomašev et al. The role of hubness in clustering high-dimensional data. IEEE Transactions on Knowledge and Data Engineering 26(3):739–751, 2014.