



## EvalNE: A Framework for Evaluating Network Embeddings on Link Prediction

Alexandru Mara, Jefrey Lijffijt, and Tijl De Bie Ghent University, Belgium

## Outline

- 1. Motivation
- 2. Objectives
- 3. Network Embedding (NE)
- 4. Link Prediction (LP)
- 5. Evaluating NE on LP
- 6. EvalNE frameworks
- 7. Experiments



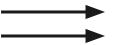


#### **Motivation**

Difficulty of comparing new network embedding methods against the sota.

- Non-standard evaluations
  - Networks
  - Methods
  - Method implementations
  - Hyperparameter tuning
  - Evaluation metrics
- LP a complex task
- Current NE frameworks
  - OpenNE
  - GEM

incomparable results



evaluation prone to errors, many evaluation choices limited LP evaluation capabilities, very restricted





## **Objectives**

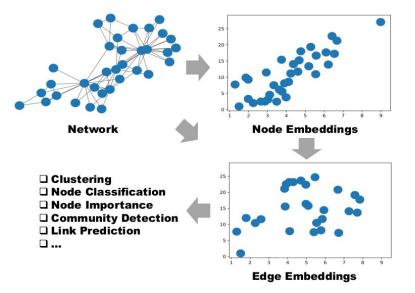
- Address the reproducibility crisis in the field of Network Embedding (NE) for Link Prediction (LP)
- Simplify evaluation of NE methods and comparison with sota
- Provide a unified benchmarking framework
  - Flexible enough to adapt to existing evaluation settings
  - Flexible to incorporate any method and data
  - Minimize the likelihood of evaluation errors
  - With justified recommendations of the most adequate evaluation pipelines





## **Network Embedding (NE)**

- A mapping of network nodes to d-dimensional vector representations
- The representation learned can be used as features for a variety of standard ML tasks (e.g. clustering, classification, etc.)
- Constitute a way of bringing all the power of standard ML to graphs
- Node embeddings and/or edge embeddings

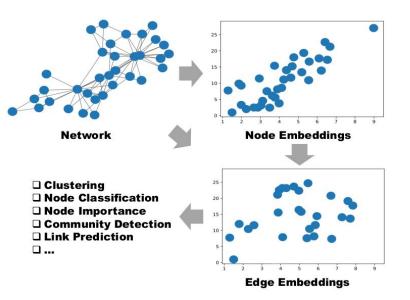






## **Network Embedding (NE)**

- Formally, a network embedding is a mapping  $\Phi$ :  $V \rightarrow R^{|V| \times d}$  where d << |V|. This mapping  $\Phi$  defines the latent representation (or embedding) of each node  $v \in V$ .
- Categories of NE methods
  - Matrix factorization (e.g. LapEig, MatFact)
  - Random walks (e.g. DeepWalk, Node2vec)
  - Deep learning (e.g. SDNE, BINE)
- Learning embeddings:
  - 1. Proximity measure defined on the graph
  - 2. Similarity in the embedding space
  - 3. Cost function







## **Network Embedding Evaluation**

The quality of the embeddings provided by NE methods is generally assessed through the following tasks:

- Multi-label classification
- Clustering
- Visualization
- Link prediction





## **Network Embedding Evaluation**

The quality of the embeddings provided by NE methods is generally assessed through the following tasks:

- Multi-label classification
- Clustering
- Visualization
- Link prediction

Only node embedding, embed complete network and evaluate

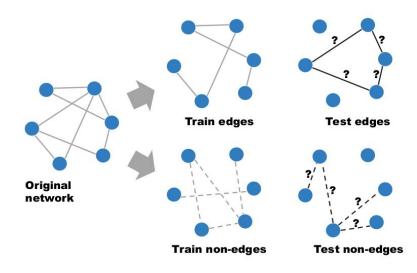
Edge embedding, evaluation requires embedding of a subgraph of the original network or snapshot of the network in time





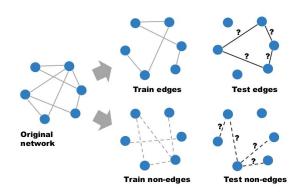
## Link Prediction (LP)

- Estimate the likelihood of the existence of edges between pairs of nodes
- Binary classification with positive and negative examples (both true edges and non-edges required for evaluation)
  - Split the network edges in a set of train edges and a set of test edges (snapshots of the network in time can be used for train/test)
  - Generate sets of *false* edges or non-edges
  - Train the binary classifier with a set of train edges and train non-edges
  - Evaluate performance on the test edges



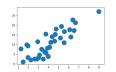




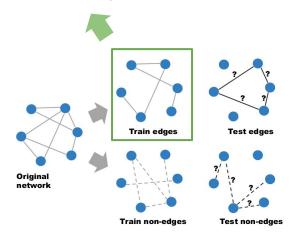






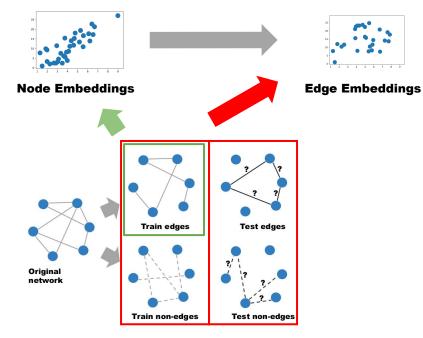


**Node Embeddings** 



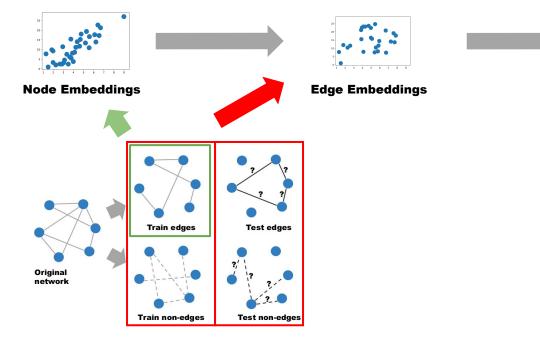








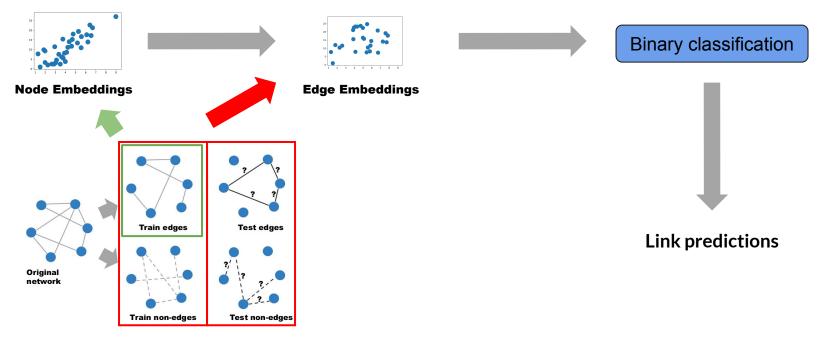




#### Binary classification











Evaluation choices:

- Network preprocessing
  - Restrict graph to main cc
  - Relabel nodes
- Train/test fraction
  - Common values 30-90
- Non-edge sampling
  - Open-world
  - Closed-world
- Train/Test edge selection
  - Naive slow approaches





Evaluation choices:

- Node to edge embedding
- LP heuristics
- Binary classifiers
- Evaluation metrics
  - Commonly AUROC, prec@k, prec-recall

Average (Avg.):

$$x_u \oplus x_v \equiv \frac{x_{u,i} + x_{v,i}}{2}$$

Hadamard (Had.):

$$x_u \odot x_v \equiv x_{u,i} * x_{v,i}$$

Weighted  $L_1$ :

$$||x_u \cdot x_v||_{\bar{1}} \equiv |x_{u,i} - x_{v,i}|$$

Weighted  $L_2$ :

$$||x_u \cdot x_v||_{\bar{2}} \equiv |x_{u,i} - x_{v,i}|^2$$



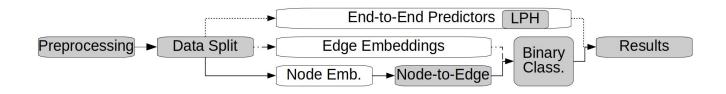


## EvalNE

Eval 🖄 🤁

**Read** *the* **Docs** 

- CLI tool and API
- Open-source (<u>https://github.com/Dru-Mara/EvalNE</u>)
- Cross-platform
- Complete documentation (<u>https://evalne.readthedocs.io/en/latest/</u>)
- Easy to use (no coding required)







#### **Main Features**

- Highly **flexible evaluation** pipelines (described in **conf. files**)
- Automated method evaluation
- Automated hyper-parameter tuning
- Simple addition of new methods
- Language-independent evaluation
- Efficient train/test edge split algorithm
- Many evaluation criteria
- Main node-to-edge embedding methods

#### Alg. 1: Train/Test edge selection

- 1. Obtain a uniform spanning tree ST of G
- 2. Initialize the set of training edges  $E_{train}$  to all edges in ST
- 3. Select edges uniformly at random without replacement from the remaining edges  $E \setminus E_{train}$ .

We select a spanning tree uniformly at random from the set of all possible ones using Broder's algorithm [2]:

- 1. Select a random vertex s of G and start a random walk on the graph until every vertex is visited. For each vertex  $i \in V \setminus \{s\}$  collect the edge e = (j, i) that corresponds to the first entrance to vertex i. Let T be this collection of edges.
- 2. Output the set T.





#### Through CLI:

- Fill configuration file
- Run:
  - 0 foo@bar:~\$ python evalue conf.ini

[GENERAL] EDGE\_EMBEDDING\_METHODS = average hadamard LP\_MODEL = LogisticRegression EXP\_REPEATS = 10 EMBED\_DIM = 128 VERBOSE = True

#### [NETWORKS]

NAMES = Facebook PPI ArXiv INPATHS = ../data/Facebook/facebook\_combined.txt ../data/PPI/ppi.edgelist ../data/Astro-PH/CA-AstroPh.txt OUTPATHS = ../output/Facebook/ ../output/PPI/ ../output/Astro-Ph/ DIRECTED = False False False SEPARATORS = '\s' ',' '\t' COMMENTS = '#' '#' ';'

# [PREPROCESSING] RELABEL = True DEL\_SELFLOOPS = True PREP\_NW\_NAME = prep\_graph.edgelist WRITE\_STATS = True DELIMITER = ','

[TRAIN\_FRAC = 0.5 FAST\_SPLIT = True OWA = True NUM\_FE\_TRAIN = None NUM\_FE\_TEST = None TRAINTEST\_PATH = train\_test\_splits/

[REPORT] MAXIMIZE = auroc SCORES = %(maximize)s CURVES = roc PRECATK\_VALS = 2 10 100 200 500 800 1000





#### Through CLI:

```
[BASELINES]
LP_BASELINES = common_neighbours
        jaccard_coefficient
        adamic_adar_index
        preferential_attachment
NEIGHBOURHOOD = in out
[OPENNE METHODS]
NAMES_OPNE = node2vec deepWalk line
METHODS_OPNE = node2vec deepWalk line
METHODS_OPNE = node2vec deepWalk line
python -m openne --method node2vec --epochs 100
        python -m openne --method line --epochs 100
TUNE_PARAMS_OPNE = --p 0.25 0.5 1 2 4 --q 0.25 0.5 1 2 4
```

```
[OTHER METHODS]
NAMES_OTHER = prune
EMBTYPE_OTHER = ne
METHODS_OTHER = python ../methods/PRUNE/src/main.py --inputgraph {} --output {} --dimension {}
# ../methods/metapath2vec/metapath2vec -train {} -output {} -size {}
TUNE_PARAMS_OTHER = -negative 1 5 10
INPUT_DELIM_OTHER = '\s'
OUTPUT_DELIM_OTHER = ','
```





As an API:

```
from evalue.evaluation import evaluator
from evalue.preprocessing import preprocess as pp
# Load and preprocess the network
G = pp.load_graph('../evalue/tests/data/network.edgelist')
G, _ = pp.prep_graph(G)
# Create an evaluator and generate train/test edge split
nee = evaluator.Evaluator()
```

```
_ = nee.traintest_split.compute_splits(G)
```

```
# Set the baselines
methods = ['random_prediction', 'common_neighbours', 'jaccard_coefficient']
```

```
# Evaluate baselines
nee.evaluate_baseline(methods=methods)
```





#### try:

```
# Get output
results = nee.get_results()
for result in results:
    result.pretty_print()
```

Replicating the Node2vec [1] LP evaluation:

- Table presents original values for LP.
- In parenthesis (our original) results.

Issues:

- Missing details in experimental setup
- Class probabilities vs class labels
- Method implementations used

|        |          | Facebook         | PPI          | arXiv        |
|--------|----------|------------------|--------------|--------------|
| ii a   | CN       | 0.81(+0.14)      | 0.71 (+0.06) | 0.82(+0.13)  |
|        | JC       | 0.88(+0.04)      | 0.70(+0.04)  | 0.81 (+0.12) |
|        | AA       | 0.83(+0.13)      | 0.71 (+0.06) | 0.83(+0.12)  |
|        | PA       | 0.71(+0.04)      | 0.67(+0.13)  | 0.70(+0.08)  |
|        | DeepWalk | 0.72(-0.01)      | 0.69(+0.08)  | 0.71(+0.01)  |
| Avg.   | LINE     | 0.70(-0.03)      | 0.63(+0.12)  | 0.65(+0.14)  |
|        | node2vec | 0.73(-0.01)      | 0.75(-0.01)  | 0.72(-0.02)  |
|        | DeepWalk | 0.97(-0.03)      | 0.74(-0.2)   | 0.93(-0.12)  |
| Had.   | LINE     | 0.95(-0.06)      | 0.72(-0.01)  | 0.89(+0.05)  |
|        | node2vec | 0.97(0.0)        | 0.77 (-0.17) | 0.94(-0.05)  |
|        | DeepWalk | 0.96(-0.01)      | 0.60(+0.14)  | 0.83(+0.09)  |
| $WL_1$ | LINE     | $0.95 \ (-0.33)$ | 0.70(-0.01)  | 0.88(-0.28)  |
|        | node2vec | 0.96(-0.01)      | 0.63(-0.03)  | 0.85(+0.03)  |
|        | DeepWalk | 0.96(-0.01)      | 0.61 (+0.14) | 0.83(+0.09)  |
| $WL_2$ | LINE     | 0.95(-0.33)      | 0.71(-0.02)  | 0.89(-0.27)  |
|        | node2vec | 0.96(0.0)        | 0.62(-0.02)  | 0.85(+0.03)  |

Replicating the CNE [2] LP evaluation:

Issues:

• Performance degradation from parallelization (Metapath2vec)

|            | Facebook    | PPI         | arXiv       | BlogCatalog | wikipedia    | studentdb   |
|------------|-------------|-------------|-------------|-------------|--------------|-------------|
| CN         | 0.97(+0.01) | 0.77(0.0)   | 0.94(+0.01) | 0.92(+0.01) | 0.84(0.0)    | 0.42(-0.01) |
| JS         | 0.97(+0.01) | 0.76(0.0)   | 0.94(+0.01) | 0.78(0.0)   | 0.50(-0.01)  | 0.42(-0.01) |
| AA         | 0.98(0.0)   | 0.77(+0.01) | 0.94(+0.01) | 0.93(0.0)   | 0.86(+0.01)  | 0.42(-0.01) |
| PA         | 0.83(+0.01) | 0.89(+0.01) | 0.86(+0.01) | 0.95(0.0)   | 0.91 (+0.01) | 0.91(+0.01) |
| DeepWalk   | 0.98(0.0)   | 0.64(+0.01) | 0.92(+0.01) | 0.61(-0.01) | 0.56(0.0)    | 0.76(+0.03) |
| LINE       | 0.95(0.0)   | 0.75(+0.01) | 0.98(0.0)   | 0.76(+0.01) | 0.71(0.0)    | 0.86(-0.02) |
| Node2vec   | 0.99(0.0)   | 0.68(+0.02) | 0.97(0.0)   | 0.73(-0.05) | 0.67(-0.08)  | 0.83(0.0)   |
| Metapath   | 0.74(+0.17) | 0.85(0.0)   | 0.83(+0.02) | 0.91(0.0)   | 0.83(+0.02)  | 0.92(-0.01) |
| CNE(unif.) | 0.99(0.0)   | 0.89(+0.01) | 0.99(0.0)   | 0.92(+0.01) | 0.84(0.0)    | 0.93(0.0)   |
| CNE(deg.)  | 0.99(0.0)   | 0.91(0.0)   | 0.99(0.0)   | 0.96(0.0)   | 0.92(-0.01)  | 0.94(0.0)   |

Replicating the PRUNE [3] LP evaluation:

Issues:

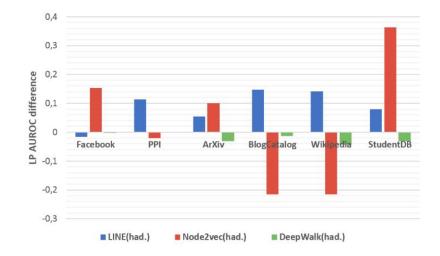
- Missing details in experimental setup
- No open-source implementation of one of the baselines (NRCL)

|             | DeepWalk    | LINE        | Node2vec    | SDNE        | PRUNE       |
|-------------|-------------|-------------|-------------|-------------|-------------|
| Hep-Ph      |             |             |             | 0.75(-0.04) |             |
| FB-wallpost | 0.83(+0.01) | 0.78(+0.09) | 0.85(-0.09) | 0.86(-0.02) | 0.88(-0.01) |





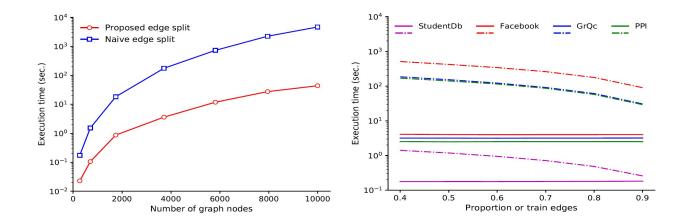
Difference in performance between two popular implementations of NE methods (OpenNE and original)







Scalability of the edge set selection method and comparison with the naive approach:

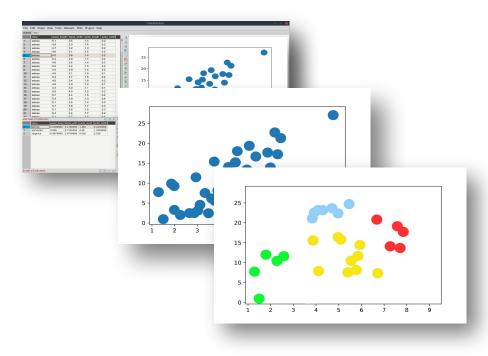






#### Future Work

- Integrate **embedding visualization**.
- Include **multi-label classification** evaluation.
- Design a flexible **GUI** capable of auto-generating configuration files.
- Include Wilson's loop-erased random walk algorithm for selecting a spanning tree uniformly at random.







#### Acknowledgements

The research leading to these results has received funding from the ERC under the EU's Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement no. 615517, from the FWO (project no. G091017N, G0F9816N), and from the EU's Horizon 2020 research and innovation programme and the FWO under the Marie Sklodowska-Curie Grant Agreement no. 665501.







Thanks!





Replicating the SDNE [4] LP evaluation:

Issues:

- Missing details in experimental setup
- The authors used all graph non-edges to compute prec@k. We approximated this values.

|          | prec@100    | prec@200    | prec@300     | prec@500        | prec@800     | prec@1000   | prec@10000  |
|----------|-------------|-------------|--------------|-----------------|--------------|-------------|-------------|
| SDNE     | 1(-0.00)    | 1(-0.00)    | 1(+0.01)     | 0.99(-0.00)     | 0.97 (+0.03) | 0.91(+0.09) | 0.25(-0.12) |
| LINE     | 1(-0.00)    | 1(-0.00)    | 0.99(+0.01)  | 0.93(+0.06)     | 0.74(+0.26)  | 0.79(+0.11) | 0.21(-0.13) |
| DeepWalk | 0.6(+0.40)  | 0.55(+0.45) | 0.44 (+0.56) | 0.34(+0.65)     | 0.29(+0.70)  | 0.29(+0.71) | 0.15(+0.01) |
| GraRep   | 0.04(+0.96) | 0.03(+0.97) | 0.03(+0.97)  | 0.04(+0.96)     | 0.03(+0.97)  | 0.03(+0.97) | 0.19(+0.16) |
| CN       | 1(-0.00)    | 0.96(+0.03) | 0.96(+0.03)  | 0.98(-0.00)     | 0.87 (+0.05) | 0.79(+0.09) | 0.19(-0.00) |
| LapEig   | 0.93(+0.07) | 0.85(+0.15) | 0.82 (+0.17) | $0.66\ (+0.34)$ | 0.46 (+0.53) | 0.39(+0.48) | 0.05(+0.15) |