Oriented incidence colouring of digraphs

André Raspaud

(Joint work with Chris Duffy, Gary MacGillivray, Pascal Ochem)

LaBRI
Université de Bordeaux
France

GT2015
August 23-28, 2015
Nyborg, Denmark
Incidence coloring

An incidence of an undirected graph G is a pair (v, e) where v is a vertex of G and e an edge of G incident with v. Two incidences (v, e) and (w, f) are adjacent if one of the following holds:

- $v = w$,
- $e = f$,
- $vw = e$ or f.

Incidence coloring

The set of all incidences in G is denoted by $I(G)$.

A k-incidence coloring of a graph G is a mapping ϕ from $I(G)$ into a set of colors $C = \{1, 2, \ldots, k\}$, such that adjacent incidence are assigned with distinct colors.
The set of all incidences in G is denoted by $I(G)$.

A k-incidence coloring of a graph G is a mapping ϕ from $I(G)$ into a set of colors $C = \{1, 2, \ldots, k\}$, such that adjacent incidence are assigned with distinct colors.

The minimum cardinality k for which G has a k-incidence coloring is the incidence chromatic number $\chi_i(G)$ of G.

Incidence coloring
Incidence coloring

The notion of incidence colouring was introduced by Brualdi and Massey in 1993.

Theorem (Brualdi and Massey, 1993)

\[\chi_i(K_n) = n, \quad n \geq 2 \]

For every graph \(G \),

\[\Delta(G) + 1 \leq \chi_i(G) \leq 2\Delta(G) \]

Theorem (Guiduli, 1997)

For every graph \(G \),

\[\chi_i(G) \leq \Delta(G) + 20 \log \Delta(G) + 84 \]
The notion of incidence colouring was introduced by Brualdi and Massey in 1993.

Theorem (Brualdi and Massey, 1993)

- $\chi_i(K_n) = n$, $n \geq 2$
- For every graph G, $\Delta(G) + 1 \leq \chi_i(G) \leq 2\Delta(G)$.

Theorem (Guiduli, 1997)

For every graph G,

$$\chi_i(G) \leq \Delta(G) + 20 \log \Delta(G) + 84.$$
For every arc uv in a digraph G, we define two incidences:

- the *tail incidence* of uv is the ordered pair (uv, u)
- the *head incidence* of uv is the ordered pair (uv, v)
Oriented Incidence of digraphs

Two distinct incidences in a digraph G are *adjacent* if and only if they correspond to one the following four cases:

- For every arc uv,
 - (1) the incidences (uv, u) and (uv, v) are adjacent.
- For every two related arcs uv and vw,
 - (2) the incidences (uv, v) and (vw, v) are adjacent,
 - (3) the incidences (uv, u) and (vw, v) are adjacent,
 - (4) the incidences (uv, v) and (vw, w) are adjacent.
Oriented Incidence coloring of digraphs
Oriented Incidence colouring of digraphs

Let I_G be the simple graph such that every vertex corresponds to an incidence of G and every edge corresponds to two adjacent incidences.

An oriented incidence colouring of G assigns a colour to every incidence of G such that adjacent incidences receive different colours.

An oriented incidence colouring of G is thus a proper vertex colouring of I_G.

For a digraph G, we define the oriented incidence chromatic number $\overrightarrow{\chi}_i(G)$ as the least k such that G has an oriented incidence k-colouring.
Observation

If G has an orientation \vec{G} then

$$\vec{\chi}_i(\vec{G}) \leq \chi_i(G)$$

Theorem (Brualdi and Massey)

For all $m \geq n \geq 2$ $\chi_i(K_{m,n}) = m + 2$
Observation

If G has an orientation \vec{G} then

$$\chi^i(\vec{G}) \leq \chi_i(G)$$

Theorem (Brualdi and Massey)

For all $m \geq n \geq 2$ $\chi_i(K_{m,n}) = m + 2$

Bipartite Tournament

$$\chi^i(T_{n,m}) = 4$$
Homomorphism

Let G and H be two digraphs a homomorphism is a mapping $f : V(G) \to V(H)$ such that $uv \in A(G)$ implies $f(u)f(v) \in A(H)$.

$$f : G \to H$$

Theorem

If G and H are digraphs such that $G \to H$, then

$$\overrightarrow{\chi_i}(G) \leq \overrightarrow{\chi_i}(H)$$
Oriented Incidence colouring and homomorphism

Oriented chromatic number

If G is an oriented graph we denote $\chi_o(G)$ the oriented chromatic number of G. It is the minimum size of a tournament T such that $G \rightarrow T$

Proposition

If G is an oriented graph, then $\chi\hat{i}(G) \leq \chi_o(G)$.
Oriented Incidence colouring and homomorphism

Oriented chromatic number

If G is an oriented graph we denote $\chi_o(G)$ the oriented chromatic number of G. It is the minimum size of a tournament T such that $G \rightarrow T$.

Proposition

If G is an oriented graph, then $\overrightarrow{\chi_i}(G) \leq \chi_o(G)$.

If $\chi_o(G) = k$ then

$G \rightarrow T_k$

$\overrightarrow{\chi_i}(T_k) \leq k$
Oriented Incidence colouring and homomorphism

Observation

If G is an oriented bipartite graph: $\overrightarrow{\chi_i}(G) \leq 4$

$G \rightarrow \overrightarrow{K}_2$

Figure: \(\overrightarrow{K}_2 \)
Oriented Incidence colouring and homomorphism

Observation

If G is an oriented bipartite graph: $\chi_i(G) \leq 4$

Figure: \overrightarrow{K}_2

Observation

For any integer n, it exists a bipartite graph G such that $\chi_o(G) \geq n$.
Oriented Incidence colouring and homomorphism

Proposition

If G is an oriented forest, then $\vec{\chi}_i(G) \leq 3$.

The complete digraph \vec{K}_k is obtained by replacing every edge xy of the complete graph K_k by the arcs xy and yx.

Proposition

Let \vec{G} be a digraph and G be the underlying simple graph of \vec{G}. Then $\vec{\chi}_i(\vec{G}) \leq \vec{\chi}_i(\vec{K}_{\chi(G)})$.
Symmetric complete digraphs

The complete digraph \overrightarrow{K}_k is obtained by replacing every edge xy of the complete graph K_k by the arcs xy and yx.

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^i (\overrightarrow{K}_n)$</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Table: Oriented incidence chromatic number of some symmetric complete digraphs
Symmetric complete digraphs

Theorem

If k and n are integers such that $n > \binom{k}{\lfloor k/2 \rfloor}$, then $\overrightarrow{\chi_i}(\overrightarrow{K_n}) > k$.

The Johnson graph $J(r, s)$ is the simple graph whose vertices are the s-element subsets of an r-element set and such that two vertices are adjacent if and only if their intersection has $s - 1$ elements.

Theorem

If k and n are integers such that $n \leq A(k, 4, \lfloor k/2 \rfloor)$, then $\overrightarrow{\chi_i}(\overrightarrow{K_n}) \leq k$.

$A(r, 4, s)$ is the independence number of the Johnson graph $J(r, s)$.
Corollary

If \(n \geq 8 \), then
\[
\log_2(n) + \frac{1}{2} \log_2(\log_2(n)) \leq \overrightarrow{\chi_i}(\overrightarrow{K_n}) \leq \log_2(n) + \frac{3}{2} \log_2(\log_2(n)) + 2.
\]

Corollary

If \(G \) is a digraph then \(\overrightarrow{\chi_i}(G) \leq (1 + o(1)) \log_2(\chi(G)) \).
Observation

Let G be a digraph with at least one arc, then $\overrightarrow{\chi_i}(G) = 2$ if and only if G admits a homomorphism to $\overrightarrow{P_2}$.
Theorem

Let G be a digraph, then $\overrightarrow{\chi_i}(G) \leq 3$ if and only if G admits a homomorphism to H_5.

Figure: The tournament H_5.
Two questions

• We have an oriented graph G so that an oriented graph admits a homomorphism to G if and only if it has an oriented chromatic number at most 3.
Is it possible to find a graph G_k for any k when $k \geq 4$, such that an oriented graph admits a homomorphism to G_k if and only if it has an oriented incidence chromatic number at most k?
Two questions

- We have an oriented graph G so that an oriented graph admits a homomorphism to G if and only if it has an oriented chromatic number at most 3. Is it possible to find a graph G_k for any k when $k \geq 4$, such that an oriented graph admits a homomorphism to G_k if and only if it has an oriented incidence chromatic number at most k?

- By the 4CT, the incidence oriented chromatic number of planar digraphs is at most 5. What is the incidence oriented chromatic number of planar oriented graphs? 4 or 5?