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Starting right in the middle 2

N1: Gn, Pk , Tk .

Theorem (Ajtai Komlós Simonovits Szemerédi)

There exists a k0 such that for k > k0, for any tree Tk , if

e(Gn) >
1

2
(k − 2)n

then Tk →֒Gn.
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Starting right in the middle 2

N1: Gn, Pk , Tk .

Theorem (Ajtai Komlós Simonovits Szemerédi)

There exists a k0 such that for k > k0, for any tree Tk , if

e(Gn) >
1

2
(k − 2)n

then Tk →֒Gn.

The general question:

Given a sample graph L, how many edges can Gn have, without
containing L.

N2: ex(n, L), = maximum number of edge . . .
EX(n,L). The family of Extremal Graphs = Gn attaining the
maximum
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Turán’s questions 3

Turán was motivated (basically) by Ramsey’s theorem
Turán asked the extremal number for various excluded

subgraphs: cube, icosahedron, octahedron, dodecahedron,

For us the important case is:

path Pk .

and trees Tk
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Erdős-Sós conjecture and its motivation 4

Kk− Kk−k−K

Kr
1 1...1

Figure : Zn,k

Theorem (Erdős-Gallai)

ex(n,Pk) ≤
1

2
(k − 2)n.

The extremal graph is Zn,k . (!)

If Sk is the star, then, trivially,

ex(n, Sk) ≤
1

2
(k − 2)n.
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Erdős-Sós conjecture 5

For any Tk ,

ex(n, Tk) ≤
1

2
(k − 2)n.

In other words,

If

e(Gn) >
1

2
(k − 2)n,

then Gn contains each k-vertex tree.

Easy:

ex(n,Tk) ≤ (k − 2)n.

Kk− Kk−k−K

Kr
1 1...1
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The conjecture/ other ≈-extremal structure 6

For any fixed tree Tk ,

ex(n, Tk) ≤
1

2
(k − 2)n.
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The conjecture/ other ≈-extremal structure 6

For any fixed tree Tk ,

ex(n, Tk) ≤
1

2
(k − 2)n.

Kk− Kk−k−K

Kr
1 1...1

k−1
 2

k−1
 2

n−

Zn,k Wn,κ
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Motivation 7

Claim (Folklore)

If dmin(Gn) ≥ k − 1, then Tk →֒Gn, for every tree Tk .

Greedy embedding

True for stars Sk : Trivial
True for paths Pk : Erdős-Gallai.

It would be trivial, if Gn were regular!

What is the difficulty?

That the vertices of Gn may have (very) different degrees, and em-
bedding Tk step by step, we may arrive at a vertex g ∈ Tk having
large degree, and when we try to put it down into x ∈ Gn, all its
neighbours are already used up.
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Some known cases 8

Sidorenko, if there is an x ∈ V (Gn) with n/2 leaves
Dobson, it the girth is “large”
Brandt-Dobson
Wozniak

Theorem (McLennan)

If diameter(Tk) ≤ 4, then ES Conjecture holds.

...
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The Loebl-Komlós-Sós conjecture 9

Conjecture (Loebl–Komlós–Sós Conjecture 1995)

Suppose that G is an n-vertex graph with at least n/2 vertices of

degree more than k − 2. Then G contains each tree of order k.

k
2
− 1

k
2
− 1

k
2
− 1

k
2
+ 1

k
2
+ 1

k
2
+ 1
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Motivation? 10

Erdős-Füredi-Loebl-Sós: Uniform distribution for graphs
Ramsey for moncohromatic trees
They needed the simplest form of this conjecture:
The Loebl Conjecture (i.e. n = k).
Komlós and Sós generalized the Loebl conjecture.
For paths there were already several similar results:
Woodall
Erdős-Faudree-Schelp-Simonovits results on the Ramsey numbers
of a fixed graph versus a large tree.
Hao Li ...
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What happend? 11

Ajtai-Komlós-Szemerédi:
Proof of the Approximative weakening of the Loebl Conjecture.

Yi Zhao: Exact solution for large k .

Piguet-Stein / Oliver Cooley: a big step forward.

Piguet-Hladký
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Details? 12

Conjecture (Weaker, approximate version)

If at least 1
2
(1 + η)n vertices of Gn have degree at least (1 + η)k,

then Tk →֒Gn.

Ajtai-Komlós-Szemerédi
Yi Zhao
Piguet-Stein / Cooley

Theorem (Hladky-Komlós-Piguet-Simonovits-Stein-Szemerédi)

The Komlós-Sós Conjecture holds for k > k0.

Arxiv (>160pp) + Short description
+ three out of four papers accepted for publications
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Why is this problem difficult? II 13

Uniqueness of extremal graphs

Those problems are easy, where there is a main property of the
(conjectured) extremal graphs “governing” the proof.
Here there are two (almost) extremal graphs, of completely different
structures.

Many graphs Gn

many different trees Tk
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Plan? 14

Is it easy for generalized random graphs?

If YES, then Regularity Lemma may help.

What is a Generalized Random Graph?

What is the Regularity Lemma

Why and when does the Regularity Lemma help?

Does it help NOW?
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What is a Generalized Random graph? 15

A matrix A = (pij)r×r of probabilities is given.

We divide n vertices into r classes Ui and join each x ∈ Ui to
y ∈ Uj independently, with probability pij

d(X ,Y ) :=
e(X ,Y )

|X ||Y |

Definition (ε-regular pair (A,B) in Gn)

... if whenever X ⊆ A and |X | > ε|A| and |Y | > ε|B |, then

|d(X ,Y )− d(A,B)| < ε.
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Important “test”:

Generalized Random Graphs 16

If we can solve an extremal graph problem “easily” for Generalized
Random Graphs, then we probably can also solve it for any dense
graphs sequence.
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What is the Regularity Lemma? 17

Informally: Each graph can be approximated

by generalized random graphs / generalized quasi-random graphs
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What is the Regularity Lemma? 17

Informally: Each graph can be approximated

by generalized random graphs / generalized quasi-random graphs

Theorem (Szemerédi Regularity Lemma)

For every ε > 0 and ν0 there exists a ν1(ε, ν0) such that for every

Gn, V (Gn) can be partitioned into ν sets U1, . . . ,Uν , for some

ν0 < ν < ν1(ε, ν0), so that ||Ui | − |Uj || ≤ 1 for every i , j > 0, and
UiUj is ε–regular for all but at most ε

(

ν
2

)

pairs (i , j).
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Why and when

does the Regularity Lemma help? 18

Basically, if

(a) (Gn) is a dense sequence: e(Gn) > cn2.

(b) for the dense generalized random graph we can easily solve
the problem.

However, the Tree problem is degenerate: the extremal graphs are
not dense. . .
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Does it help NOW? 19

YES and NO.
Our very simplified plan is:

First we make the problem dense and solve only the
approximate version:

Assuming that n ≤ Ωk makes the considered graphs dense.

Adding ηkn edges create the approximate version.

Theorem (Approximate version)

There exists a k0 such that for k > k0, for any tree Tk , if

e(Gn) >
1

2
(k − 2)n

then Tk →֒Gn.
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Does it help NOW? 19

YES and NO.
Our very simplified plan is:

First we make the problem dense and solve only the
approximate version:

Assuming that n ≤ Ωk makes the considered graphs dense.

Adding ηkn edges create the approximate version.

Theorem (Approximate version)

There exists a k0 such that for k > k0, for any tree Tk , if

e(Gn) >
1

2
(k − 2)n

then Tk →֒Gn.

+ηkn
Approximative weakening
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So what is the plan? 20

First we prove the approximate version:
– First we get rid of the individual structure of Tk by a

slicing method.
– Next we get rid of the individual structure of Gn by

using the Szemerédi Regularity Lemma

We analyze the proof and gain or get structural
information: Using the stability method we get the sharp
theorem in the dense case.

To take care of the Sparse
Case we partition V (Gn) into three
parts: A, B, and C and show that
only the case V (Gn) = A matters.
There we can apply the methods used
for the sparse case.

B

A

C

Finite−like
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When would this proof be easy, using

Regularity Lemma? 21

If we had a 1-factor, or an almost-1-factor in the Reduced
graph Hν .

Then the LKS Conjecture also would be easy, at least for
the dense case.
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Cheating? 22

There are two extremal structures,

and the 1-factor case covers only one of them, the other is described
by the

The other is cov-
ered by a deeper analysis:
Gallai-Edmonds thm

Several specific em-
bedding algorithms

V−S

S

Odd
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Where to read about it? 23

The main part is under writing up, 3 very long papers

On the Loebl-Komlós-Sós conjecture:
Arxiv: Hladký-Komlós-Piguet-Simonovits-Stein-Szemerédi
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Slicing the tree Tk 24

We fix a very small ϑ, and cut Tk into subtrees of size smaller
than ϑk .

The embedding of Tk becomes a special 2-coloured bin-packing
problem: this way we can get rid of the special structure of Tk .



The conjecture and its motivation Dense case, and why is it easier? Sharp and Approximate cases

How to apply the Regularity Lemma? 25

First we assume that n is not too large: n ≤ Ωk .
Build an auxilary graph, called Reduced graph Hν .
If Hν has a 1-factor, we embed Tk into Gn.
If Hν has a generalized 1-factor, again Tk →֒Gn.
If Hν does not have a 1-factor, we apply the
Gallai-Edmonds Decomposition to Hν and with the help
of this Tk →֒Gn.

Stability argument

But if Gn is sparse (i.e.n is very large)?
Establish a generalization of the regularity lemma
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Gallai-Edmonds structural theorem 26

V−S

S

Odd

We can delete an S so that the connected odd components of
V− S are factor-critical: either they are small or have an
almost-1-factor and S is joined to them by a 1-factor. The even
components have a 1-factor.
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Why do we need the Stability Method? 27

Partly, because we loose some edges, whenever we use the
Regularity Lemma: To get exact results with the regularity lemma
we always (?) need the stability method.

Even when we do not loose edges, the stability method
makes the proofs more transparent:

– Dodecahedron theorem
– Icosahedron theorem
– Babai-Sim-Spencer

– Fano hypergraph result (Füredi-Sim /
Keevash-Sudakov )
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How do we apply Stability 28

Via 6-7 Lemmas (?)
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Two elementary cases:

Very High Degree 29

No Stability as yet!

Lemma

If

dmax(Gn) ≥ k − 1 and dmin(Gn) ≥
k − 1

2

and

dmax(Tk) ≥
3

4
k ,

then Tk ⊆ Gn.
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Very High Degree, Stability 30

Not that Stability!

Lemma

There exists a ωs > 0 for which, if

dmax(Gn) ≥ k − 1 and dmin(Gn) ≥
k − 1

2

and

dmax(Tk) ≥

(

3

4
− ωs

)

k ,

then Tk ⊆ Gn.
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Two-center trees 31

Lemma

There exist a β > 0 and a k0 such that if k > k0 and

e(Gn) >
1

2
(k − 2)n,

and the tree Tk has two vertices, g1 and g2, of high degrees:

dT (g1) + dT (g2) > k − h for some h ≤ βk ,

then Tk ⊆ Gn. Moreover, if dG (x) ≥ k − 1, then there is an

embedding that maps g1 to x.

Even distance Odd distance
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Sketch 32

AKSSz: THE STRUCTURE OF THE PROOF, [ApproxD3] May 27, 2008 16

STRUCTURE

OF THE PROOF

2a §??:

Lemma:
If there is no dense part

1:

n < Ωk: DENSE CASE:

defining a1,a2, b1,b2.

2: §??:

n ≥ Ωk: SPARSE CASE:

Algorithm to classify the
points, §??
The classes: As, Aℓ, B,
C=high degrees

2b §??:

Preparation:
Gap in
degrees

1.1:

There exists
a
gen-1-factor

1.2, §6.8 :

There exists no 1-factor:
Tutte case,

2.1:

Can As be
neglected?

2.2: §??:

C = ∅

2.3:

e(C, A ∪ B) ≥ 2c1kn

1.2.1:

Large
degree in
V − S: ≥ k

2.3.1: §??:

e(C, B) ≥ c1kn

2.3.2: §??:

e(C, A) ≥ c1kn

1.2b §??:

Lemma
1 − 2x − y

1.2.2:

Expanding
tree:
a1 < a2

1.2.3:

Shrinking
tree:
a1 ≥ a2

2.2.1: §??:

B = ∅

2.2.2: §??:

B represents ≥ c2kn edges

1.2.2.1:

Is the Lemma
Applicable?

1.2.2.2:

How to
apply?

1.2.2.2:

Cleaning Lemma

LargeSketch

Figure 4: The structure of the proof. The actual proof follows a slightly

different line.
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How to prove the Erdős-Sós conjecture if we

have its approximative version? 33

Cut off some elementary cases,
Analyze some general embedding situations.
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How to prove the Erdős-Sós conjecture if we

have its approximative version? 33

Cut off some elementary cases,
Analyze some general embedding situations.

2 high degrees

High degree cases
1 high degree

Pseudo−sparse graphs

Sparse graphs

Small dense graphs: Blocks?

Clean preliminary results
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Main result 34

Sharp form If

e(Gn) >
1

2
(k − 2)n,

then for k > k0, every k-vertex tree Tk ⊆ Gn.
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Main result 34

Sharp form If

e(Gn) >
1

2
(k − 2)n,

then for k > k0, every k-vertex tree Tk ⊆ Gn.

Approximate form If

e(Gn) >
1

2
(k − 2)n + ηkn,

then for k > k0, every k-vertex tree Tk ⊆ Gn
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Main result 34

Sharp form If

e(Gn) >
1

2
(k − 2)n,

then for k > k0, every k-vertex tree Tk ⊆ Gn.

Approximate form If

e(Gn) >
1

2
(k − 2)n + ηkn,

then for k > k0, every k-vertex tree Tk ⊆ Gn

⇐=



The conjecture and its motivation Dense case, and why is it easier? Sharp and Approximate cases

Conjectured graph sequences

showing the (asymptotic) sharpness 35

Assuming that the conjecture holds, Zn,k is extremal if n is a
multiple of k − 1.

Kk− Kk−k−K

Kr
1 1...1

k−1
 2

k−1
 2

n−

Zn,k Wn,κ

(a) The extremal graphs (b) “bottleneck”
graph
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Conjectured graph sequences

showing the (asymptotic) sharpness 35

Assuming that the conjecture holds, Zn,k is extremal if n is a
multiple of k − 1.

Kk− Kk−k−K

Kr
1 1...1

k−1
 2

k−1
 2

n−

Zn,k Wn,κ

(a) The extremal graphs (b) “bottleneck”
graph

Difficulties come from
Having many trees Tk ,
Having 2 extremal sequences.
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Stability method 36

Theorem (Main Theorem, Approximative)

If n, k > n0(η) and for an arbitrarily fixed tree Tk , a graph Gn on

n vertices contains no Tk , then

e(Gn) ≤
1

2
(k − 2)n + ηn.

Analyze the special structure when we really use +ηkn.
Show that then we have a very special structure.
Prove – using the special structure – the Sharp Theorem.
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General cases, Stability 37

Apply the regularity lemma (n < Ωk .) Hν = cluster graph.
There is a 1-factor in Hν .
There is a Generalized 1k-Factor in Hν .
Shrinking Tutte
Expanding Tutte
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General cases, Stability 38

Tree-parameters: a1, a2, b1, b2

1

RED

RED

RED GENERALS

BLUE GENERALS

BLUE

BLUE

2

1

2

n/6

n/2

n/3

g
R

B’

A"

A’

B

B"

a

1

1b

a

b

1

2

2

Figure : (a) The 4 parameters (b) High degree GENERALS (c) P6

Symmetry breaking: a1 + b2 ≤
1
2
k

Shrinking: a2 < a1
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Example for General cases, Stability 39

There is a Generalized 1k-Factor in Hν .
N(z)

N(w)

z

w

AB
B

AB A
AB

AB

B  = A-AB types                            B  = the others2

a

b

A

A

1

We have a lot of cluster-edges in Hν

They are joined in 4 ways to the distinguished pair (z,w)
We define the Good and Bad parts.
Fill in the w-neighbours
Fill in the z-neighbours
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Dense Blocks: Almost complete graphs 40

Theorem

Fix c∗ = 10−10. Let Tk be a k-vertex tree. If

ℓ ∈ [k − 2, k + c∗k] and e(Gℓ) >
1

2
(k − 2)ℓ

then Tk ⊂ Gℓ.

The graph itself is almost complete, with ≈ k vertices.
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Graphs with Dense Blocks 41

Theorem (Almost complete blocks)

Fix c∗ = 10−10. Let Tk be a k-vertex tree. If Gℓ ⊆ Gn for some

ℓ ∈ [k − 2, k + c∗k], Gn is connected, and

e(Gn) >
1

2
(k − 2)n and e(Gℓ) >

1

2
(k − 2)ℓ− c∗kℓ,

then Tk ⊂ Gn, or there is a Gm ⊆ Gn with

e(Gm) >
1

2
(k − 2)m.

This means that the conjecture holds if Gn contains an

almost complete block, with ≈ k vertices.
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Dense Blocks, Broom-trees 42

second one?

w

Figure : (a) Kernel (b) 2-level Broom-tree (c) Many-level broom-tree
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Dense Blocks, Brooms, Basic idea 43

��
��
��

��
��
��

Kernel: Delete the low degrees from Gℓ: H
∗.

Extended Kernel: Add those ones sending 0.4k edges to H∗.
The graph is basically cut into two parts: Extended Kernel and outside.
The mindegree in the outside part is large.
If many edges go out from the block, we build up a large part outside

Outside we use a greedy algorithm;
inside we use a pseudo-greedy
embedding.
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Dense Blocks, Path-like-trees 44

When Tk has few (< ck) endvertices.
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Figure : Shrinking and expanding the tree.

Using König-Hall
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γ-sparse graphs 45

Theorem

Let γ ≤ 10−4. Assume that Gn does not contain γ-dense parts.

There exists a constant k0(γ) for which, if k > k0(γ) and

dmax(Gn) > dmax(Tk) + 2γk

and

dmin(Gn) > d∗

max(Tk) + 2γk

then Tk ⊆ Gn. Moreover, if dmin(Gn) ≥
k−1
2

, then the max-degree

vertex g1 of Tk can be mapped onto any vertex of Gn of degree

≥ dmax(Tk) + 2γk.
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Pseudo-Sparse Graph Theorem 46

For any γ < 10−4 there exists a k0(γ) with the following property: Let Tk

be any tree on k > k0(γ) vertices. Let Gn be a graph on n vertices with

e(Gn) >
1

2
(k − 2)n. (1)

Assume that V (Gn) is partitioned into two classes C and B, where all the

vertices of C have degree > 100k and all the vertices of B have degrees

≥ 1
2
(k − 2). If G [B], i.e. the subgraph spanned by the vertices of B, does

not contain γ-dense parts, then Tk ⊆ Gn.

Moreover, if dmin(Gn) ≥
k−1
2

, then the max-degree vertex g1 of Tk can

be mapped onto any vertex x ∈ V (Gn) of degree dG (x) ≥ dmax(Tk) and

then one can extend this into an embedding Tk →֒Gn.
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Pseudo-Sparse Graph Theorem (P) 47

No dense parts

High degrees
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Proof idea of the Sparse Graph Theorem 48

Since there are no dense pairs, when we have built up a Tm ⊆ Gn,
most of the vertices send back to Tm only few edges.

We cut Tk into small subtrees. Embed them one by one.
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Proof idea of the Sparse Graph Theorem 48

Since there are no dense pairs, when we have built up a Tm ⊆ Gn,
most of the vertices send back to Tm only few edges.

We cut Tk into small subtrees. Embed them one by one.

Generalizes results of Dobson and others, at least, for large k .
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Happy Birthday, Bjarne 50
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Bjarne and Bondy 51
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The Toft graph 52

Odd cycle

Odd cycle

Completely
joined

1−factor

1−factor

Erdős-Dirac: find a
4-colour-critical graph with
many edges.

This led to interesting
hypergraph extremal
problems, solved by
Toft/Simonovits and finally
by Lovász.

Begining of the algebraic
methods in extremal graph
theory.
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