(H, Q)-COLOURINGS OF GRAPHS

MIECZYSŁAW BOROWIECKI

joint work with

E. DRGAS-BURCHARDT

Department of Discrete Mathematics and Theoretical Computer Science University of Zielona Góra, Poland

We consider finite undirected graphs without loops or multiple edges. Let \mathcal{I} denote the class of all graphs. A property (class) of graphs is any nonempty class of graphs from \mathcal{I} which is closed under isomorphisms. A property \mathcal{P} is called (*induced*) hereditary if every (induced) subgraph of any graph with property \mathcal{P} also has property \mathcal{P} .

Let be given graphs G and H, a homomorphism of G to H is a vertexmapping $h: V(G) \to V(H)$ such that $vv' \in E(G)$ implies $h(v)h(v') \in E(H)$. If there exists a homomorphism of G to H, then we write $G \to H$. Clearly the existence of a homomorphism $G \to K_k$ coincides with the existence of a k-colouring of G and thus homomorphisms $G \to H$ are called H-colourings, where labels of vertices from V(H) are referred to as colours.

Let $\mathcal{Q} \subseteq \mathcal{B}$, where \mathcal{B} denotes the class of bipartite graphs, and let G be Hcoloured such that for any two colour classes V_i, V_j the graph $G[V_i \cup V_j] \in \mathcal{Q}$. Such homomorphism will be denoted by $G \xrightarrow{\mathcal{Q}} H$ and called (H, \mathcal{Q}) -colouring.

Let \mathcal{P} be a hereditary property of graphs and assume that $k \geq 2$. We say that \mathcal{P} is a (k, \mathcal{Q}) -Ramsey class, if for every $G \in \mathcal{P}$ there exists $H \in \mathcal{P}$ such that for every (K_k^*, \mathcal{Q}) -colouring of H $(K_k^*$ denotes a k-complete reflexive graph) there is a monochromatic copy of G.

In a talk some (k, \mathcal{Q}) -Ramsey classes and results concerning (H, \mathcal{Q}) colourings, for selected H and \mathcal{Q} , will be presented.