Three complexity results on coloring P_k -free graphs

Hajo Broersma

Abstract

We prove three complexity results on vertex coloring problems restricted to P_k -free graphs, i.e., graphs that do not contain a path on k vertices as an induced subgraph. First of all, we show that the precoloring extension version of 5-coloring remains NP-complete when restricted to P_6 -free graphs. Recent results of Hoàng et al. imply that this problem is polynomially solvable on P_5 -free graphs. Secondly, we show that the pre-coloring extension version of 3-coloring is polynomially solvable for P_6 -free graphs. This implies a simpler algorithm for checking the 3-colorability of P_6 -free graphs than the algorithm given by Randerath and Schiermeyer. Finally, we prove that 6-coloring is NP-complete for P_7 -free graphs. This problem was known to be polynomially solvable for P_5 -free graphs, and NP-complete for P_8 -free graphs, so there remains one open case.