The Spanning Galaxy Problem

Daniel Gonçalves * Frédéric Havet ${ }^{\dagger}$ Alexandre Pinlou * Stéphan Thomassé *

Abstract

In a directed graph, an star is an out-branching with at least one arc, in which the root dominates all the other vertices. A galaxy is a vertex-disjoint union of stars. In this paper, we consider the Spanning Galaxy Problem of deciding whether a digraph D has a spanning galaxy or not. We show that although this problem is NP-complete (even when restricted to acyclic digraphs), it becomes polynomial-time solvable when restricted to strongly connected digraphs. We prove indeed that in the strongly connected case, the problem is equivalent to finding a strong subgraph with an even number of vertices. As a consequence of this work, we improve some results concerning the notion of directed star arboricity of a digraph D, which is the minimum number of galaxies needed to cover all the arcs of D. We show in particular that $\operatorname{dst}(D) \leq \Delta(D)+1$ for every digraph D and that $d s t(D) \leq \Delta(D)$ for every acyclic digraph D.

[^0]
[^0]: *Université Montpellier 2 - CNRS, LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France. E-mail: [Daniel.Goncalves, Alexandre.Pinlou, thomasse]@lirmm.fr
 ${ }^{\dagger}$ Projet Mascotte I3S (CNRS \& UNSA) and INRIA, INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France E-mail: Frederic.Havet@sophia.inria.fr. Partially supported by the european project FET-AEOLUS.

