Maximum Number of Cycles and Hamiltonian Cycles in Sparse Graphs

Zoltán Király
Eötvös University, Budapest

In this talk we concentrate to the maximum number of cycles in the union of two trees. In order to prove non-trivial bounds we also need some upper bounds on the number of Hamiltonian cycles in 3- and 4-regular graphs.

We examine some important special cases of the following problem. Let \mathcal{H} be a set of graphs. A graph is called \mathcal{H}-free, if it does not have any subgraph isomorphic to any member of \mathcal{H}. Let $f_{\mathcal{H}}^{k}(n)$ denote the maximum number of subgraphs isomorphic to a member of \mathcal{H} in any graph that is a union of $k \mathcal{H}$-free graphs on the vertex set $V:=\{1,2, \ldots, n\}$.

We mainly focus the problem, where $\mathcal{H}=\mathcal{C}$, here \mathcal{C} denotes the set of all cycles. Thus in this problem every G_{i} is a tree (forest) and we are going to calculate (bound) the maximum number of cycles in their union. Our main goal is to prove upper and lower bounds for $f(n):=f_{\mathcal{C}}^{2}(n)$. Interestingly, giving a non-trivial upper bound for $f(n)$ needs non-trivial upper bound for the number of Hamiltonian cycles in a 4-regular graph. And, for proving this bound, we need an upper bound on the number of Hamiltonian cycles in a 3 -regular graph.

Theorem 1 (Folklore) If $G=(V, E)$ is a connected multigraph on n vertices having m edges, then the number of Eulerian subgraphs is exactly 2^{m-n+1}. Consequently $2^{m-n+1}-1$ is an upper bound on the number of cycles.

Let $h(G)$ denote the number of Hamiltonian cycles and $c(G)$ denote the number of cycles in graph G. Fix $\alpha=\sqrt[8]{8} \approx 1.2968, \beta=\sqrt[4]{2} \approx 1.1892, c_{1}=$ $3 /(2 \beta) \approx 1.2613$.

Theorem 2 If G is a 3 -regular graph on n vertices then $h(G) \leq c_{1} \cdot \alpha^{n}$.
Theorem 3 If G is a graph with m edges then $h(G) \leq c_{1} \cdot\left(2-\varepsilon_{1}\right)^{m-n}$, where $\varepsilon_{1}=2-\left(2^{\frac{11}{12}} \cdot \gamma^{\frac{1}{12}}\right) \approx 0.0287$.

Theorem 4 If G is a connected graph with $m=2 n$ edges, then $c(G) \leq c \cdot n^{2}$. $(2-\varepsilon)^{n}$ for some positive constants c and ε. Consequently $f(n) \leq c \cdot n^{2} \cdot(2-\varepsilon)^{n}$.

We will also prove a theorem about union of k trees, and show some constructions giving the best known lower bounds. Detailed version can be found in Egres Technical Report TR-2009-03, www.cs.elte.hu/egres/

