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In this talk we concentrate to the maximum number of cycles in the union of
two trees. In order to prove non-trivial bounds we also need some upper bounds
on the number of Hamiltonian cycles in 3- and 4-regular graphs.

We examine some important special cases of the following problem. Let H
be a set of graphs. A graph is called H-free, if it does not have any subgraph
isomorphic to any member of H. Let fk

H(n) denote the maximum number of
subgraphs isomorphic to a member of H in any graph that is a union of k H-free
graphs on the vertex set V := {1, 2, . . . , n}.

We mainly focus the problem, where H = C, here C denotes the set of all
cycles. Thus in this problem every Gi is a tree (forest) and we are going to
calculate (bound) the maximum number of cycles in their union. Our main goal
is to prove upper and lower bounds for f(n) := f2

C (n). Interestingly, giving a
non-trivial upper bound for f(n) needs non-trivial upper bound for the number
of Hamiltonian cycles in a 4-regular graph. And, for proving this bound, we
need an upper bound on the number of Hamiltonian cycles in a 3-regular graph.

Theorem 1 (Folklore) If G = (V, E) is a connected multigraph on n ver-
tices having m edges, then the number of Eulerian subgraphs is exactly 2m−n+1.
Consequently 2m−n+1 − 1 is an upper bound on the number of cycles.

Let h(G) denote the number of Hamiltonian cycles and c(G) denote the
number of cycles in graph G. Fix α = 8

√
8 ≈ 1.2968, β = 4

√
2 ≈ 1.1892, c1 =

3/(2β) ≈ 1.2613.

Theorem 2 If G is a 3-regular graph on n vertices then h(G) ≤ c1 · αn.

Theorem 3 If G is a graph with m edges then h(G) ≤ c1 · (2− ε1)m−n, where
ε1 = 2− (

2
11
12 · γ 1

12
) ≈ 0.0287.

Theorem 4 If G is a connected graph with m = 2n edges, then c(G) ≤ c · n2 ·
(2−ε)n for some positive constants c and ε. Consequently f(n) ≤ c ·n2 ·(2−ε)n.

We will also prove a theorem about union of k trees, and show some con-
structions giving the best known lower bounds. Detailed version can be found
in Egres Technical Report TR-2009-03, www.cs.elte.hu/egres/

http://www.cs.elte.hu/egres/www/tr-09-03.html

