Bounds on the Independence Number of a Graph Dieter Rautenbach, TU-Ilmenau

We discuss three recent results concerning independence in graphs.

- For a non-negative integer T, we prove that the independence number of a graph G in which every vertex belongs to at most T triangles is at least $\sum_{u \in V} f(d(u), T)$ where $d(u)$ denotes the degree of a vertex $u \in V, f(d, T)=\frac{1}{d+1}$ for $T \geq\binom{ d}{2}$ and $f(d, T)=$ $\left(1+\left(d^{2}-d-2 T\right) f(d-1, T)\right) /\left(d^{2}+1-2 T\right)$ for $T<\binom{d}{2}$. This is a common generalization of the lower bounds for the independence number due to Caro, Wei, and Shearer. We discuss further possible strengthenings of our result and pose a corresponding conjecture.
(Joint work with A. Boßecker.)
- We prove that if G is a graph with κ components and independence number $\alpha(G)$, then there exist a positive integer $k \in \mathbb{N}$ and a function $f: V \rightarrow \mathbb{N}_{0}$ with non-negative integer values such that $f(u) \leq d(u)$ for $u \in V, \alpha(G) \geq k \geq \sum_{u \in V} \frac{1}{d(u)+1-f(u)}$, and $\sum_{u \in V} f(u) \geq 2(k-$ $\kappa)$. This result is a best-possible improvement of a result due to Harant and Schiermeyer [On the independence number of a graph in terms of order and size, Discrete Math. 232 (2001), 131-138] and implies that $\frac{\alpha(G)}{n(G)} \geq \frac{2}{\left(d(G)+1+\frac{2}{n(G)}\right)+\sqrt{\left(d(G)+1+\frac{2}{n(G)}\right)^{2}-8}}$ for connected graphs G of order $n(G)$ and average degree $d(G)$.
(Joint work with J. Harant.)
- We prove several best-possible lower bounds in terms of the order and the average degree for the independence number of graphs which are connected and/or satisfy some odd girth condition. Our main result is the extension of a lower bound for the independence number of triangle-free graphs of maximum degree at most 3 due to Heckman and Thomas [A New Proof of the Independence Ratio of Triangle-Free Cubic Graphs, Discrete Math. 233 (2001), 233-237] to arbitrary triangle-free graphs. For connected triangle-free graphs of order n and size m, our result implies the existence of an independent set of order at least $(4 n-m-1) / 7$.
(Joint with C. Löwenstein, A.S. Pedersen, and F. Regen.)

