Covering line graphs with equivalence relations

Louis Esperet*
John Gimbel ${ }^{\dagger}$
Andrew King ${ }^{\ddagger}$

Abstract

An equivalence graph is a disjoint union of cliques, and the equivalence number $e q(G)$ of a graph G is the minimum number of equivalence subgraphs needed to cover the edges of G. We consider the equivalence number of a line graph, giving improved upper and lower bounds: $\frac{1}{3} \log _{2} \log _{2} \chi(G)<e q(L(G)) \leq 2 \log _{2} \log _{2} \chi(G)+2$, where $\chi(G)$ stands for the chromatic number fo G. This disproves a recent conjecture that $e q(L(G))$ is at most three for triangle-free G; indeed it can be arbitrarily large.

To bound eq(L(G)) we bound the closely-related invariant $\sigma(G)$, which is the minimum number of orientations of G such that for any two edges e, f incident to some vertex v, both e and f are oriented out of v in some orientation. When G is triangle-free, $\sigma(G)=e q(L(G))$. We also prove that even when G is triangle-free, it is NP-complete to decide whether or not $\sigma(G) \leq 3$.

References

[1] N. Alon, Covering graphs with the minimum number of equivalence relations, Combinatorica 6 (1986), 201-206.
[2] A. Blokhuis and T. Kloks, On the equivalence covering number of splitgraphs, Inform. Process. Lett. 54 (1995), 301-304.
[3] P. Duchet, Représentations, noyaux en théorie des graphes et hypergraphes, Thèse d'État, Université Paris VI, 1979.
[4] I. Kříz and J. Nešetřil, Chromatic Number of Hasse Diagrams, Eyebrows and Dimension, Order 8 (1991), 41-48.
[5] C. McClain, Edge colorings of graphs and multigraphs, Ph.D. Thesis, The Ohio State University, 2008.

[^0]
[^0]: *CNRS, Laboratoire G-SCOP, Grenoble, France.
 ${ }^{\dagger}$ Mathematical Sciences, University of Alaska, Fairbanks, AK, USA.
 ${ }^{\ddagger}$ Dept. of Industrial Engineering and Operations Research, Columbia University, New-York, NY, USA.

