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Preface
The Danish graph theory community (represented by Lars Døvling Andersen,
Jørgen Bang-Jensen, Leif Kjær Jørgensen, Carsten Thomassen, Bjarne Toft,
Preben Dahl Vestergaard) arranges the meeting GRAPH THEORY 2008 AT
SANDBJERG MANOR, August 17-23, 2008. The meeting focuses on all as-
pects of graph theory. During the meeting we celebrate Carsten Thomassen’s
60th birthday (Aug. 22, 2008).

We are grateful for the support provided by

The Danish Agency for Science, Technology and Innovation,

The Carlsberg Foundation,

The Knud Højgaard Foundation and

The Department of Mathematics and Computer Science
at the University of Southern Denmark.
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Program Overview

Sunday August 17

Recommended day of arrival. No dinner, but sandwiches available
in the evening.

Monday August 18

08:00-09:00 Breakfast

09:00-12:00 Plenary lectures

12:00-13:00 Lunch

15:00-18:00 Parallel lectures

18:00-19:00 Dinner

19:30-21:30 Lecture and Problem session

Tuesday August 19

08:00-09:00 Breakfast

09:00-12:00 Plenary lectures

12:00-13:00 Lunch

15:00-18:00 Parallel lectures

18:00-19:00 Dinner

19:30-21:30 Plenary short lectures

Wednesday August 20

08:00-09:00 Breakfast

09:00-12:00 Plenary lectures

12:00-13:00 Lunch

13:00-18:00 Excursion

18:00-19:00 Dinner
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Thursday August 21

08:00-09:00 Breakfast

09:00-12:00 Plenary lectures

12:00-13:00 Lunch

15:00-18:00 Parallel lectures

19:00-21:00 Conference dinner

Friday August 22

08:00-09:00 Breakfast

09:30-10:00 Carsten Thomassen plenary lecture

10:00-12:00 Plenary lectures

12:00-13:00 Lunch

15:00-18:00 Plenary lectures

18:00-19:00 Dinner

20:00-??:?? Birthday get together

Saturday August 23

08:00-09:00 Breakfast

09:00-12:00 Plenary lectures

12:00-13:00 Lunch

Recommended day of departure
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Carsten Thomassen elaborating on Hajós’ Conjecture.

Sexagesimal1

To be sixty years old, to be solemn and sage
And a fount of the wisdom that mellows with age
Esteemed by the old and revered by the young –
And to sit at a feast where ones praises are sung.

To be sixty years old, to look over ones field
And survey the knowledge oneself has revealed
In papers well-structured for learning and gain
And students and friends like pearls in a chain.

How good to be sixty! Yet each may aspire
Diamond Jubilee joys for himself to acquire
What happens to Carsten can happen to thee!
I try to forget it happend to me.

1After Blanche Descartes.
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Talks: Titles and Abstracts2

Michael O. Albertson, Smith College, USA

The Chromatic Number and the Crossing Number

This talk will give a highlights tour of recent results and open questions that
relate the chromatic number and crossing number of a graph. For instance,
given a drawing of a graph G, two crossings are said to be dependent if they
are incident with the same vertex. A set of crossings is independent if no
two are dependent. We conjecture that if G is a graph that has a drawing
all of whose crossings are independent, then χ(G) ≤ 5. This conjecture is
true when cr(G) ≤ 3. We do know that if all crossings are independent, then
χ(G) ≤ 6, and the independence ratio of G is at least 3

16
.

Robert E.L. Aldred, University of Otago, New Zealand

(joint work with Carsten Thomassen)

Bounding the maximum number of cycles
in a graph with p vertices and q edges

Let G be a connected graph with p vertices and q edges and define the pa-
rameter r = q − p + 1. Denote by Ψ(r) the maximum number of cycles in
such a graph. In 1981 it was noted by Entringer and Slater that the dimen-
sion of the cycle space of such a graph is known to be 2r and consequently,
Ψ(r) ≤ 2r − 1 . In the same paper, the Möbius ladders were used to show
Ψ(r) ≥ 2r−1 + r2 − 3r + 3 . At the time it was conjectured that the true
value of Ψ(r) should be closer to the latter bound. We discuss these bounds
and some recent progress in the general case along with an effective resolution
of the conjecture for planar graphs.

2Ordered alphabetically according to the surnames of the speakers.

4



Dan Archdeacon, University of Vermont

Superthrackles

We give a complete characterization of graphs that can be drawn in the plane
such that every pair of edges, adjacent or non-adjacent, cross exactly once.

Tinaz Ekim Aşici, Boḡaziçi University, Turkey

Generalized Colorings with Applications to some Problems in Robotics

We study the problem where a robot has to pick up items of different sizes
which are stored along a corridor. A natural requirement is that the items
have to be collected in decreasing order of their sizes. We deal with various
systems according to the location of the Entry/Exit station where the robot
unloads the collected items after each trip along the corridor. We show that
each of these systems can be modeled as a generalized coloring problem in
permutation graphs. More precisely, we will be dealing with the problems
called Minimum Split Coloring and Minimum Cocoloring. We discuss related
complexity issues. Besides, we observe that some systems cannot be modeled
in terms of graphs but only in terms of permutations. Some open questions
related to the last-mentioned problems will be discussed.

János Barát, University of Szeged, Hungary

Islands

Let an n ×m rectangular board be given. We associate a real number (al-
titude) to each cell, that is a 1× 1 square. Two different cells are neighbors
if they have at least a point in common. A rectangular subtable S is called
an island if the altitude of each cell in S is greater than the altitude of the
neighbors of S. The motivation is obvious, when we imagine a vast rainfall
over the board, the above defined islands will be formed. A basic question is
the following: What is the maximum number of different islands?

In the talk, we will show how Carsten is connected to this problem. We
will give a solution using some graph theory. If time permits, we will describe
several generalizations and open problems.
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Thomas Böhme, TU Ilmenau, Germany

(joint work with Jens Schreyer and Patrick Bauermann)

On applications of graph theory in game theory

An n player game Γ in strategic form consist of a set I = {1, . . . , n} of
players, and for each player i ∈ I a finite set Ai of actions and a payoff
function ui : A1 × · · · × An. We define the graph G(Γ) to be the graph with
vertex set I. Two vertices (players) i and j are connected by a directed edge
from i to j if and only if player i’s action can influence the payoff of player
j. We consider a repeated play of Γ at discrete time intervalls t = 1, 2, . . . .
Initially, each player knows her set of actions but nothing else about the
game. After the k’th play each player observes her realized action and the
respective payoff but nothing about the other players’ play. The main result
is that the players can learn to play a pure Nash equilibrium, provided Γ has
a pure Nash equilibrium, if the graph G(Γ) is strongly connected.

Adrian Bondy, Université Claude-Bernard Lyon 1, France

Paths and Cycles in Digraphs

Carsten Thomassen has made significant and beautiful contributions to many
areas of graph theory. We shall survey just one small aspect of his work,
namely that on paths and cycles in digraphs. We shall also present a number
of open problems and conjectures on the topic, and discuss recent progress
on some of them.

Oleg Borodin, Sobolev Institute of Mathematics, Russia

Recent results on the planar 3-coloring

This is a summary of results on the 3-coloring of planar graphs obtained
recently with the participation of people from Novosibirsk.
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Debra Boutin, Hamilton College, USA

The Cost of 2-Distinguishing

A graph is said to be 2-distinguishable if there is a labeling of the vertices with
two labels so that only the trivial automorphism preserves the vertex labels.
Define the 2-distinguishing cost of G, denoted ρ(G), to be the minimum size
of a label class in such a labeling. A determining set of a graph is a subset
of its vertices with the property that each automorphism of the graph is
uniquely determined by its action on the set. For a 2-distinguishable graph
a determining set can be an elegant first approximation of a label class. This
talk will introduce the 2-distinguishing cost, then define and use determining
sets to find good bounds on ρ(Qn) and ρ(Kn

3 ). We will see that both are
Θ(log n).

Stephan Brandt, TU Ilmenau, Germany

(joint work with Elizabeth Ribe-Baumann)

Dense graphs with large odd girth

Generalizing a result from Häggkvist and Jin for the case k = 3, it can be
shown that every graph of order n with odd girth at least 2k+1 and minimum
degree δ ≥ 3n/4k is either homomorphic with C2k+1 or can be obtained from
the Möbius ladder with 2k spokes by vertex duplications. The key tools used
in our observations are simple characteristics of maximal odd girth 2k + 1
graphs.
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Kathie Cameron, Wilfrid Laurier University, Canada

(joint work with Jack Edmonds)

Coflow, Covering Vertices by Directed Circuits, and a Lower Bound on the
Stability Number of a Graph

Let G be a digraph, and for each edge e of G, let d(e) be a non-negative
integer. The capacity, d(C), of a dicircuit C means the sum of the d(e)’s of
the edges in C. A version of the Coflow Theorem (1982) says:

Coflow Theorem. The maximum size of a subset S of vertices of digraph
G such that each dicircuit C of G contains at most d(C) members of S equals
the minimum of the sum of the capacities of any subset H of dicircuits of G
plus the number of vertices of G which are not in a dicircuit of H.

When we proved the Coflow Theorem, we hoped to prove the following con-
jecture made by Gallai in 1963:

Gallai’s Conjecture. For any digraph G such that each edge and each ver-
tex is in a dicircuit, the maximum number of vertices in G no two of which
are joined by an edge is at least as big as the minimum number of dicircuits
which together cover all the vertices.

However, we were missing the following:

Lemma. For any digraph G such that each edge and each vertex is in a
dicircuit, G contains a set F of edges such that G − F is acyclic and every
edge of G is in some dicircuit which contains exactly one edge of F .

We recently learned that Knuth proved this lemma in 1974. The Coflow The-
orem together with Knuth’s Lemma provides a proof of Gallai’s Conjecture
different from that recently published by Bessy and Thomassé.
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Carl Johan Casselgren, Umeå Universitet, Sweden

(joint work with A.S. Asratian, J. Vandenbussche and D.B. West)

Interval edge colorings of (a, b)-biregular bipartite graphs

An edge coloring of a graph G is called an interval coloring if the colors on
the edges incident with each vertex of G are distinct and form an interval
of integers. An (a, b)-biregular bigraph is a bipartite graph in which each
vertex of one part has degree a and each vertex of the other part has degree
b. We survey recent results on interval colorings of general (a, b)- biregular
bigraphs and pay particular attention to the case of (3, 4)-biregular bigraphs.
By a well-known conjecture of Toft, every (3, 4)-biregular bigraph has an
interval coloring with 6 colors. We will discuss a new sufficient condition for
(3, 4)-biregular bigraphs to admit interval colorings: If such a graph G has a
spanning subgraph whose components are paths with endpoints at 3-valent
vertices and lengths in {2, 4, 6, 8}, then G has an interval coloring.

Gek Ling Chia, University Malaya, Malaysia

(joint work with Carsten Thomassen)

Grinberg’s Criterion on Non-Planar Graphs

Robertson (1968) and independently, Bondy (1972) proved that the general-
ized Petersen graph P(n, 2) is hamiltonian if n ≡ 5 (mod 6) while Thomason
(1982) proved that it has precisely three hamiltonian cycles if n ≡ 3 (mod 6).
Here we give a unified proof (which is easier) of these results using Grinberg’s
theorem.

Maria Chudnovsky, Columbia University, USA

The structure of bullfree graphs

The bull is a graph consisting of a triangle and two disjoint pendant edges.
Obvious examples of bullfree graphs are graphs with no triangle, or graphs
with no stable set of size three. But there are others (for examples substi-
tuting one bullfree graph into another produces another bullfree graphs). It
turns out, however, that one can explicitly describe all bullfree graphs that
cannon be constructed from smaller ones by substitutions. In this talk we
will discuss this construction. We will also mention the connection with the
Erdős-Hajnal conjecture.
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Reinhard Diestel, Universität Hamburg, Germany

π1(|G|), earrings, and limits of free groups

We characterize the fundamental group of a locally finite graph G with ends,
by embedding it canonically as a subgroup in the inverse limit of the free
groups π1(G

′) with G′ ⊂ G finite. As an intermediate step, we characterize
π1(|G|) combinatorially as a group of infinite words.

This is joint work with Philipp Sprüssel. The paper, and the application
to graph homology that prompted us to study the fundamental group, can
be found at

http://www.math.uni-hamburg.de/home/diestel/papers/Homotopy.pdf
http://www.math.uni-hamburg.de/home/diestel/papers/Homology.pdf

Jack Edmonds, Université Pierre et Marie Curie, France

Euler Complexes

We present a class of instances of the existence of a second object of a spec-
ified type, in fact, of an even number of objects of a specified type, which
generalizes the existence of an equilibrium for bimatrix games. The proof
is an abstract generalization of the Lemke-Howson algorithm for finding an
equilibrium of a bimatrix game.

Herbert Fleischner, Austrian Academy of Sciences, Austria

Carsten’s contributions to the Hamiltonian theme

In this talk, I review some of Carsten’s results on hamiltonian graphs, in-
cluding hypohamiltonian graphs and uniquely hamiltonian graphs.

John Gimbel, University of Alaska Fairbanks, USA

(joint work with Tinaz Ekim Aşici)

Defective Cocolorings of Graphs

Given an integer k, a k-defective coloring is a partition of the vertex set where
each part induces a graph with a maximum degree of at most k. A cocoloring
is a partition where each part induces a complete or empty graph. The two
concepts are the subject of several papers. In this talk we introduce a fusion
of the two ideas. A k-defective cocoloring is a partition of the vertex set
where each part induces a graph with maximum degree at most k or induces
in the complement of such a graph. We discuss some preliminary notions
related to this parameter.
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Ronald J. Gould, Emory University, USA

Distributing vertices on hamiltonian cycles

Let G be a graph of order n and 3 ≤ t ≤ n
4
be an integer. Recently, Kaneko

and Yoshimoto provided a sharp δ(G) condition such that for any set X of
t vertices, G contains a hamiltonian cycle H so that the distance along H
between any two vertices of X is at least n/2t. In this paper, minimum
degree and connectivity conditions are determined such that for any graph
G of sufficiently large order n and for any set of t vertices X ⊆ V (G), there
is a hamiltonian cycle H so that the distance along H between any two
consecutive vertices of X is approximately n

t
. Furthermore, we determine

the δ threshold for any t chosen vertices to be on a hamiltonian cycle H
in a prescribed order, with approximately predetermined distances along H
between consecutive chosen vertices.

Gregory Gutin, Royal Holloway, University of London, UK

Out-branchings with Extremal Number of Leaves

An out-tree T in a digraph D is subgraph of D which is an orientation of a
tree that has only one vertex of in-degree 0 (root). A vertex of T is a leaf
if it has out-degree 0. A spanning out-tree is called an out-branching. We’ll
overview some recent algorithmic and theoretical results on out-branchings
with minimum and maximum number of leaves.

Ervin Győri, Hungarian Academy of Sciences, Hungary

On 2-factors in graphs

We plan to present sufficient degree conditions for graphs to have 2-factors
consisting of exactly k cycles. In some cases, we strengthen the statement
by having prescribed edges, in some cases we weaken the degree condition by
assuming Hamiltonicity.
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Roland Häggkvist, Umeå Universitet, Sweden

Some facts about (a, b)-biregular bigraphs and path factors

An (a, b)-biregular bigraph (or an (a, b)-graph) is a bipartite graph where
the vertices in one part have degree a and all vertices in the other part have
degree b.

In addition to the following facts that shall be plugged:

• Every 2-edge-connected (3, 4)-graph of girth 6 has a P4,3-decomposition,
where a Pk,k−1 is a path of length 2k − 2 with k vertices in the first
part and k − 1 vertices in the second part,

• there exists an infinite number of 2-edge-connected (3, 4)-graphs where
every {P2,1, P3,2, . . .} factor is a {P3,2, P5,4}-factor, and

• a 2-edge-connected (3, 4)-graph on 7k vertices contains a 2-regular sub-
graph H on 6k vertices.

I shall discuss the following observation:

• Every (b, b + 1)-graph has a {P2,1, P3,2, . . .}-factor if and only if b ≥ 1
and it has a {P1,0, P2,1, P3,2, . . .}-factor.

Pavol Hell, Simon Fraser University, Canada

Graphs and Polymorphisms

Polymorphisms are of interest in algebra and logic, and they are conjectured
to be a universal tool for proving tractability of constraint satisfaction prob-
lems. I will illustrate their appeal and usefulness in graph theory, by giving
a guided tour of some new and some well known graph classes defined by the
existence of basic polymorphisms.
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Jing Huang, University of Victoria, Canada

Partitions and bichromatic numbers of graphs

For a pair of integers k, ` ≥ 0, a graph G = (V,E) is (k, `)-colourable if V
can be partitioned into k + ` (possibly empty) subsets I1, . . . , Ik, C1, . . . , C`
such that each Ii induces an independent set and each Cj induces a clique in
G. The (k, `)-colourability, which generalizes both colouring and clique cov-
ering, best approximates the hereditary property of graphs. The bichromatic
number χb(G) of G is the least integer r such that for all k, ` with k+ ` = r,
G is (k, `)-colourable. It is easy to see that χb(G) is bounded above by
χ(G)+θ(G)−1 where χ(G) and θ(G) are respectively the chromatic number
and the clique covering number of G. Here we characterize all graphs G for
which the upper bound is attained, i.e., χb(G) = χ(G) + θ(G) − 1. It turns
out that these graphs are all cographs and they are critical in the sense that
a cograph H is not (k, `)-colourable if and only if H contains an induced
subgraph G with χ(G) = k + 1, χ(G) = `+ 1 and χb(G) = k + `+ 1.

Joan Hutchinson, Macalester College, USA

(joint work with M.O. Albertson)

Extending precolorings to list-colorings

Answering some questions of C. Thomassen, results are known on extend-
ing precolorings to colorings of an entire graph. Similarly list-colorings are
sought that extend pre-list-colorings. Using recent work of A.Pruchnewski
and M.Voigt we consider results in which precolorings are extended to list-
colorings of the entire graph for planar graphs, bipartite graphs, K4- and
K5-minor-free graphs.

Tommy R. Jensen, Universität Klagenfurt, Austria

Circuit Double Covers and locally Tait colourings

It has been suggested that every 2-edge-connected graph may have its edges
double covered by circuits, even when any one circuit of the graph has been
fixed in advance. This open problem reduces to cubic graphs. For those cubic
graphs that allow Tait colourings, i.e. proper 3-edge-colourings, it is easy to
solve. The talk will describe a stronger variation of this problem. In the
case of a fixed Hamilton circuit our new version can be solved by applying
proper edge colourings that may use more than three colours globally, yet
locally they are similar to Tait colourings. Colourings of this type have
the advantage that they occur also in many cubic graphs that are not Tait
colourable, possibly even in all cubic graphs.
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Tibor Jordán, Eötvös Loránd University, Hungary

Graph theoretical characterization of uniquely localizable networks

Suppose that V is a set of nodes in the plane (or in three dimensions) and
we are given the distance between some pairs of nodes in V . When does
this distance information uniquely determine the location of all nodes, up to
congruence?

When the nodes are in ’general position’ , unique localizability depends
only on the graph of the known distances. We shall discuss a few recent
results and open problems related to this question and show how graph and
matroid theoretical methods can be used to attack different variations of this
problem.

Ken-ichi Kawarabayashi, The National Institute of Informatics,
Japan

From Carsten’s Proofs/Results to Hadwiger’s Conjecture

Around 15 years ago, Carsten Thomassen proved that there are only
finitely many 6-color-critical graphs on a fixed surface. The result itself is
very deep, but the methods are also useful.

In this talk, we shall show how the CT’s methods can be used to prove
the following theorems concerning Hadwiger’s conjecture (which says that
every graph with no Kt-minor is (t− 1)-colorable).

1. Every minimal counterexample to Hadwiger’s conjecture has at most
f(t) vertices for some function f of t.

2. There is a polynomial time (actually, we believe an O(n2) time !) al-
gorithm to decide Hadwiger’s conjecture for fixed t.

In addition, we shall discuss the following topics:

1. Does every t-colorable graph with no Kt-minor have exponentially
many colorings?

2. Additive approximation algorithm for list-coloring graphs with no Kt-
minor.

3. t-colorability of graphs with no Kt+1-minor.

All of these topics are motivated by CT’s work on coloring graphs in a
fixed surface.
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Martin Kochol

A negative solution of the edge-coloring conjecture of Grünbaum

An embedding of a graph in a surface is called polyhedral if its dual has
no multiple edges and loops. A conjecture of Grünbaum, presented in 1968,
states that each 3-regular graph with a polyhedral embedding in an orientable
surface has a 3-edge-coloring. This statements holds true for the sphere,
because by Tait, the Four Color theorem is equivalent with the statement that
each 2-edge-connected 3-regular planar graph has a 3-edge-coloring. Thus the
Grünbaum’s conjecture aims to generalize the Four Color Theorem for any
orientable surface. We present a negative solution of this conjecture, showing
that for each orientable surface of genus at least 5, there exists a 3-regular
non 3-edge-colorable graph with a polyhedral embedding in it.

Alexandr V. Kostochka, University of Illinois at
Urbana-Champaign, USA

(joint work with M. Kumbhat and V. Rödl)

Coloring simple uniform hypergraphs of small size

A hypergraph is simple if it has no 2-cycles, i.e., no two distinct edges of
the hypergraph have more one vertex in common. Let m∗(r, k) denote the
fewest edges that might have a simple r-uniform non-k-colorable hypergraph.
Erdős and Lovász proved that

k2(r−2)

16r(r − 1)2
≤ m∗(r, k) ≤ 1600r4k2(r+1).

Szabó improved the lower bound by a factor of r2−ε for large r. We improve
both, upper and lower bound for large r (in comparison to k and ε) to

kr/rε ≤ m∗(r, k) ≤ c · (r ln k)2k2r.

The bounds generalize to b-simple hypergraphs, i.e. hypergraphs in which
no two distinct edges share more than b vertices. We also give a new random
construction of r-uniform non-k-colorable hypergraphs of arbitrary girth with
maximum degree at most dr kr−1 ln ke.
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Jan Kratochvíl, Charles University, Czech Republic

(joint work with Petr Golovach)

Generalized domination in special graph classes

We investigate the interplay of polynomial solvability and warranty of unique
solution of the problem under consideration, in the setting of generalized
domination.

Given sets σ, ρ of nonnegative integers (as parameters of the problem),
a set S of vertices of a graph G is called (σ, ρ)-dominating if the number of
S-neighbors of any vertex of S (of V \S) is an element of σ (ρ, respectively).
This notion was introduced by Telle and has been investigated by Telle,
Proskurowski, Heggernes, Miller, etc. In particular, for any pair of finite
nonempty sets σ, ρ (such that 0 6∈ ρ), already deciding the existence of a
(σ, ρ)-dominating set in an input graph is NP-complete. Polynomial/NP-
completeness dichotomy results for restricting the input graphs to be chordal
(or k-degenerate) were obtained by Golovach and Kratochvil. They relate to
the concept of ambivalence in the following sense.

Given a graph class M , the pair (σ, ρ) is called ambivalent for M if there
exists a graph G ∈ M with at least two different (σ, ρ)-dominating sets;
otherwise it is non-ambivalent for M . For chordal graphs, the existence of
a (σ, ρ)-dominating set can be decided in polynomial time when the pair
(σ, ρ) is non-ambivalent for chordal graphs, and the problem is NP-complete
otherwise. Similarly for k-degenerate graphs (for any k ≥ 2).

The last part of the talk will deal with planar graphs, where we are not
able to fully characterize the computational complexity, nor the connection
to ambivalence. We believe that this leads to interesting open problems.

Matthias Kriesell, Mathematisches Seminar der Universität
Hamburg, Germany

Packing Steiner Trees

An A-tree in a graph is a subgraph which covers A, and an A-tree-packing
is a family of edge disjoint A-trees. Large A-tree-packings indicate good
connectivity properties of A. In real networks, they yield good fault toler-
ance or transmission bandwidth among a selected set of vulnerable or service
providing nodes, respectively, as in backbone– or hub-&-spoke–architectures.
Therefore, it is desirable to find good solutions for the corresponding packing
problem. The talk surveys the efforts put into this over the past years.
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Daniela Kühn, Birmingham University, UK

(joint work with Peter Keevash, Luke Kelly, Deryk Osthus and Andrew Treglown)

Hamilton cycles in directed graphs

It is unlikely that there exists a satisfactory characterization of all those
graphs which contain a Hamilton cycle, so much work has been done to
find simple sufficient conditions. The most famous result in this direction is
Dirac’s theorem which gives a minimum degree condition for the existence
of a Hamilton cycle.

Surprisingly, the corresponding problems are much more difficult for di-
rected graphs and oriented graphs (oriented graphs are directed graphs with
at most one edge between each pair of vertices). In my talk, I will discuss (i)
an analogue of Dirac’s theorem for oriented graphs and (ii) an approximate
solution of a conjecture of Nash-Williams which would give a characterization
of all degree sequences forcing a Hamilton cycle in a directed graph.

Hao Li, Université Paris-Sud, France

TBA

Vadim V. Lozin, University of Warwick, UK

Boundary properties of graphs

The notion of a boundary graph property is a relaxation of that of a minimal
property. Several fundamental results in graph theory have been obtained
in terms of identifying minimal properties. For instance, Robertson and
Seymour showed that there is a unique minimal minor-closed property with
unbounded tree-width (the planar graphs), while Balogh, Bollobás and Wein-
reich identified nine minimal hereditary properties with the factorial speed
of growth. However, there are situations where the notion of minimal prop-
erty is not applicable. A typical example of this type is given by graphs
of large girth. It is know that for each particular value of k, the graphs of
girth at least k are of unbounded tree-, clique- or rank-width and their speed
of growth is superfactorial, while the ’limit’ property of this sequence (i.e.,
acyclic graphs) has bounded tree-, clique- and rank-width and their speed
of growth is factorial. To overcome this difficulty, we introduce the notion
of boundary properties of graphs and identify some of them with respect to
various graph problems.
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Gary MacGillivray, University of Victoria, Canada

Injective homomorphisms of directed graphs

A homomorphism from a digraph D to a digraph H is called injective if it
is injective on the in-neighbourhood of each vertex. Complexity results for
injective homomorphisms of irreflexive digraphs D are considered in the case
when the target digraph H is reflexive, and in the case where the target
graph H is irreflexive. A dichotomy theorem is obtained in the case where
H is reflexive, whereas a such a theorem in the case where H is irreflexive
would imply one for all digraph homomorphism problems. The complexity
of the related injective oriented chromatic number problems (the minimum
n for which a digraph D admits an injective homomorphism to a digraph on
n vertices – defined together with A. Raspaud) is also discussed.

Wolfgang Mader, Universität Hannover, Germany

Openly disjoint circuits through a vertex

Almost 60/2 years ago, Carsten Thomassen constructed, for every positive
integer r, finite digraphs of minimum outdegree and minimum indegree at
least r without a vertex y contained in 3 circuits which have pairwise exactly
y in common. We study what happens, if we add further conditions as high
connectivity or regularity.

Brendan McKay, Australian National University, Australia

Recursive generation of 5-regular planar graphs

We describe for the first time how the 5-regular simple planar graphs can all
be obtained from a simple family of starting graphs by repeatedly applying a
few expansion operations. The proof uses an innovative amalgam of theory
and computation. By incorporating the recursion into the canonical con-
struction path method of isomorph rejection, a generator of non-isomorphic
5-regular planar graphs is obtained with time complexity O(n2) per isomor-
phism class.
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Bojan Mohar, Simon Fraser University, Canada

(joint work with Simon Špacapan)

Coloring parameters and genus

We overview several coloring parameters whose value is bounded on graphs
of bounded (Euler) genus. These include the usual chromatic number, the
acyclic, the star and the degenerate chromatic number, and some of their
relatives. We determine their dependence on the genus. The probabilistic
method is used in proving both upper and lower bounds.

Jaroslav Nešetřil, Charles University, Czech Republic

(joint work with Patrice Ossona de Mendez)

On nowhere dense and somewhere dense - a graph trichotomy

Motivated by structural decompositions and other asymptotic properties of
graphs we define the notions in the title and show the wide spectrum of
examples of nowhere dense graphs. This has several algorithmic consequences
and it generalizes and improves earlier results.

Deryk Osthus, Birmingham University, UK

(joint work with Luke Kelly and Daniela Kühn)

Cycles of given length in oriented graphs

The Caccetta-Häggkvist conjecture would determine the minimum outdegree
which forces a cycle of length at most k in an oriented graph. We study the
related question of which minimum out- and indegree forces a cycle of length
exactly k in an oriented graph. We answer this question whenever k is not a
multiple of 3 and propose a conjecture for the other cases.
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Shariefuddin Pirzada, University of Kashmir, India

Some Lists in Bipartite Multi-Hypertournaments

Given non-negative integers m,n,h and k with m ≥ h ≥ 1 and n ≥ k ≥ 1,
an [h, k]-bipartitie multi hypertournament (or briefly [h, k]-BMHT) on m+n
vertices is a triple (U, V,A), where U and V are two sets of vertices with
|U | = m and |V | = n and A is a set of (h + k)-tuples of vertices, called
arcs with exactly h vertices from U and exactly k vertices from V , such
that any h + k subset U1UV1 of UUV,A contains at least one and at most
(h + k)! (h + k)-tuples whose entries belong to U1UV1. If A is a set of
(h + k)-tuples of vertices with at least one and at most k vertices from V
such that A contains at least one and at most (h + k)! (h + k)-tuples,then
the bipartite multi hypertournament (or briefly (h, k)-BMHT). We obtain
necessary and sufficient conditions for a pair of non-negative integers in non-
decreasing order to be losing score lists and score lists of [h, k]-BMHT and
(h,K)-BHMT.

Michael D. Plummer, Vanderbilt University, USA

(joint work with Ken-ichi Kawarabayashi)

Bounding the size of equimatchable graphs of fixed genus

A graph G is said to be equimatchable if every matching in G extends to (i.e.,
is a subset of) a maximum matching in G. In a 2003 paper, Kawarabayashi,
Plummer and Saito showed that there are only a finite number of 3-connected
equimatchable planar graphs. In the present paper, this result is extended by
showing that in a surface of any fixed genus (orientable or non-orientable),
there are only a finite number of 3-connected equimatchable graphs having a
minimal embedding of representativity at least three. The proof makes use
of the Gallai-Edmonds decomposition theorem for matchings.

André Raspaud, Université de Bordeaux I, France

Star coloring of sparse graphs

A proper coloring of the vertices of a graph is called a star coloring if the
union of every two color classes induce a star forest. The star chromatic
number χs(G) is the smallest number of colors required to obtain a star
coloring of G. In this talk we will present bounds of χs(G) for sparse graphs.
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Dieter Rautenbach, TU Ilmenau, Germany

(joint work with Stephan Brandt, Jozef Miskuf and Friedrich Regen)

Edge-Injective and Edge-Surjective Vertex Labellings

For a graph G = (V,E) we consider vertex-k-labellings f : V → {1, 2, . . . , k}
for which the induced edge weighting w : E → {2, 3, . . . , 2k} with
w(uv) = f(u) + f(v) is injective or surjective or both.

We study the relation between these labellings and the number theoretic
notions of an additive basis and a Sidon set, present a new construction for a
so-called restricted additive basis and derive the corresponding consequences
for the labellings.

We prove that a tree of order n and maximum degree ∆ has a vertex-
k-labelling f for which w is bijective if and only if ∆ ≤ k = n/2. Using
this result we prove a recent conjecture of Ivančo and Jendrol’ concerning
edge-irregular total labellings for graphs that are sparse enough.

Bruce Reed, McGill University, Canada

Parity Minors and Parity Routing

We discuss extensions of the seminal results of the graph minor project of
Robertson and Seymour to ’odd minors’. We discuss applications both to
problems about packing paths and cycles of specified parities, and to Had-
wiger’s conjecture. Early work in this area, which motivated many of these
results is due to Carsten Thomassen.

Bruce Richter, University of Waterloo, Canada

Theorems of MacLane and Whitney for Graph-Like Spaces

Abstract not yet available.

Neil Robertson, The Ohio State University, USA

TBA
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Gert Sabidussi, McGill and U. de Montréal, Canada

(joint work with Herbert Fleischner and Vladimir Sarvanov)

Independent Sets in 4-Regular Hamiltonian Graphs

In the early 90s, Du,Hsu and Hwang raised the question whether 4-regular
hamiltonian graphs whose inner cycles are triangles ("cycle-plus-triangles
graphs") contain independent sets of size at least n/3, where n is the or-
der of the graph. A well-known result, conjectured by Erdös and proved
by Fleischner and Stiebitz, provides an affirmative answer in the stronger
sense that cycle-plus-triangles graphs are 3-colorable. This result cannot be
generalized to "smooth" 4-regular hamiltonian graphs (i.e. whose inner cy-
cles - like triangles - are non-selfintersecting): it has been shown that for
such graphs 3-colorability is NP-complete. This left open the extension to
smooth 4-regular hamiltonian graphs of the original question of Du, Hsu and
Hwang concerning independent sets. We show that for these graphs both
the Maximum Independent Set Problem (MIS) and the Large Independent
Set Problem (existence of an independent set of size at least n/3) are NP-
complete. As an auxiliary result we prove that MIS is NP-complete also for
3-regular hamiltonian graphs, indeed even for planar hamiltonian 3-regular
graphs.

Horst Sachs, TU Ilmenau, Germany

(joint work with Peter John)

Spectral theory of n-fold periodic graphs with applications to toroidal
6-cages, (3, 6)-cages, and (2, 6)-cages

Toroidal 6-cages (i.e., hexagonal tesselations of the torus, in a chemical con-
text also called toroidal fullerenes) are used as prototypes for outlining a
general spectral theory of n-dimensional toroidal graphs derived from some
locally finite n-fold periodic graph.

The results are used to calculate explicitly spectra and orthonormal eigen-
vector systems of toroidal 6-cages, (3, 6)-cages and (2, 6)-cages (a (q, 6)-cage,
where q ∈ {2, 3, 4, 5}, is a two-connected cubic plane graph that has only
q-gons and hexagons as its faces; the graph of an ordinary fullerene is a
(5, 6)-cage).
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Ingo Schiermeyer, TU Freiberg, Germany

(joint work with Stephan Matos Camacho and Zsolt Tuza)

Approximation algorithms for the minimum rainbow subgraph problem

Our research was motivated by the pure parsimony haplotyping problem:
Given a set G of genotypes, the haplotyping problem consists in finding a set
H of haplotypes that explains G. In the pure parsimony haplotyping problem
(PPH) we are interested in finding a set H of smallest possible cardinality.

The pure parsimony haplotyping problem can be described as a graph
colouring problem as follows:

The minimum rainbow subgraph problem
Given a graph G, whose edges are coloured with p colours. Find a sub-

graph F ⊆ G of G of minimum order with |E(F )| = p such that each colour
occurs exactly once.

In this talk we will present polynomial time approximtaion algorithms for
the minimum rainbow subgraph problem:

• Applying the greedy algorithm we obtain an approximation algorithm
with an approximation ratio of ∆(G) for graphs with maximum degree
∆(G).

• Based on matching techniques we present an approximation algorithm
with an approximation ratio of 5

3
for graphs with maximum degree 2.
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Paul Seymour, Princeton University, USA

(joint work with Maria Chudnovsky and Bruce Reed)

The densest graphs with no K2,t minor

For a graph H and an integer n, let e(H,n) be the maximum number of
edges of an n-vertex simple graph with no minor isomorphic to H. For all
choices of H, it is known that e(H,n) is at most linear in n, but finding it
exactly is much more difficult.

For instance, it is easy to see that for n ≥ t− 2,

e(Kt, n) ≥ (t− 2)n− (t− 1)(t− 2)/2.

Mader showed that equality holds for t ≤ 7, but not for t = 8 and larger;
and Kostochka and Thomason showed that e(Kt, n)/n = O(t

√
( log t)) for t

large.
For other graphs H, the function e(H,n) has not been studied so ex-

haustively. The answer is easy when H = K1,t, but challenging even when
H = K2,t. The natural conjecture is that e(K2,t, n) ≤ (n − 1)(t + 1)/2, for
then equality would hold at least whenever t divides n−1; and in 2003 Myers
proved this for all t ≥ 1029. In joint work with Maria Chudnovsky and Bruce
Reed, we have proved this for all t. We sketch the proof and related topics.

Matěj Stehlík, Charles University, Czech Republic

(joint work with Daniel Král)

The chromatic number of triangle-free graphs on the double torus

The classical theorem of Grötzsch asserts that every triangle-free planar
graph is 3-colourable. Triangle-free graphs embeddable on the torus are
4-colourable, as was shown by Kronk and White. Gimbel and Thomassen
asked whether triangle-free graphs on the double torus are also 4-colourable.
This question was recently settled in the affirmative; here we present the
proof of this result.
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Michael Stiebitz, TU Ilmenau, Germany

Edge Colouring of Multigraphs

There are two trivial lower bounds for the chromatic index χ′(G) of a (multi)graph
G, namely the maximum degree ∆(G) and the density W(G); the last graph
parameter is defined by

W(G) = max
H⊆G,|V (H)|≥2

⌈
|E(H)|⌊
1
2
|V (H)|

⌋⌉ .
A famous conjecture made, independently, by Goldberg, Anderson and

Seymour in the 1970s says that every graph G satisfies

χ′(G) ≤ max{∆(G) + 1,W(G)}. (1)

If χ′f (G) denotes the fractional chromatic index of G, then (1) implies
that every graph G satisfies

χ′f (G) ≤ χ′(G) ≤ χ′f (G) + 1. (2)

In 1990 Nishizeki and Kashiwagi proved that χ′(G) ≤ max{(11∆(G) +
8)/10,W(G)} for every graph G. The proof was based on the so-called crit-
ical chain method. A shorter proof of this result was given by Tashkinov
in 2000. The main tool in Tashkinov’s proof are Tashkinov trees, a com-
mon generalization of both Vizing fans and Kierstaed paths. Favrholdt,
Stiebitz and Toft extended Tashkinov’s method and proved in 2006 that
χ′(G) ≤ max{(13∆(G) + 10)/12,W(G)} for every graph G. In 2007 Scheide
extended this result to χ′(G) ≤ max{(15∆(G)+12)/14,W(G)} for all graphs
G. Furthermore, he proved that every graph G satisfy χ′(G) ≤ max{∆(G) +√

∆(G)/2,W(G)} and χ′(G) ≤ χ′f (G) +
√
χ′f (G)/2. The last result extends

a result of Kahn from 1996 as well as a result of Sanders and Steurer from
2005. The proofs of all these results are constructive and based on an ex-
tension of Tashkinov’s method. In particular, the proof of the inequality
χ′(G) ≤ max{∆(G) +

√
∆(G)/2,W(G)} =: τ(G) yields an algorithm that

computes, for every graph G = (V,E), an edge colouring of G using at most
τ(G) colours, where the algorithm has time complexity bounded from above
by a polynomial in |V | and |E| (and also in ∆).
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Robin Thomas, Georgia Institute of Technology, USA

Beyond Grötzsch’s theorem

Grötzsch’s theorem states that every triangle-free planar graph is 3-colorable.
We give a short proof of Grötzsch’s theorem and a refinement that leads to
a linear-time algorithm to 3-color triangle-free planar graphs. This is joint
work with Zdeněk Dvořák and Ken-ichi Kawarabayashi.

In the second part of the talk we discuss the following theorem. There
exists an absolute constant c such that if G is a 4-critical triangle-free graph
drawn on a surface of Euler genus g, then G has at most cg faces of length at
least five, each of length at most cg. This implies a theorem of Thomassen
that there are only finitely many 4-critical graphs of girth at least five on
any given surface. The second part is joint with Zdeněk Dvořák and Daniel
Král.

Carsten Thomassen, Technical University of Denmark

On the theorems of Menger and Kuratowski

Menger’s theorem from 1927 on (internally) disjoint paths is one of the most
basic tools in graph theory, and there several proofs. It seems less known
that the theorem has also enjoyed some attention in topology. In the talk
I survey some of the topological versions and present a new general version
(joint with Antoine Vella). I also discuss the analogous linkage problem. To
deal with this we need a topological version of another fundamental result in
graph theory: Kuratowski’s theorem.
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Mikkel Thorup, AT & T Labs-Research, USA

Efficient Cuts via Greedy Tree Packing

We study a simple greedy tree packing of a graph and use it to derive better
algorithms for fully-dynamic min-cut and for the static k-way cut problem.

A greedy tree packing is a sequence of spanning tree where each new tree
is a minimum spanning tree with respect to the edge loads from the previous
trees, that is, the load of an edge is the number of times it has been used by
the previous trees.

A minimum k-way cut is a minimum set of edges whose removal splits
the graph in k components. A min-cut is a minimum 2-way cut.

If the (unknown) edge connectivity of the graph is c, we show that if
we pack c7 log3m trees, then some min-cut is crossed exactly once by some
tree. This leads to the best fully-dynamic min-cut algorithm (presented at
STOC’01)

If we pack k3 log n trees, then every minimum k-way cut is crossed 2k− 2
times by some tree. This leads to the best determinstic algorithm for k-way
cut (presented at STOC’08)
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Jan van den Heuvel, London School of Economics and Political
Science,UK

(joint work with Frédéric Havet, Colin McDiarmid and Bruce Reed; Omid Amini
and Louis Esperet)

Distance-Two Colouring of Graphs

A distance-two colouring of a graph G is a colouring of the vertices of G
in which vertices at distance one or two must get different colours. This is
obviously the same as a normal ( proper ) vertex-colouring of the square G2

of G, where G2 is the graph with the same vertex set as G and with an
edge between any two different vertices that have distance at most two in G.
Finding the chromatic number of squares of graphs has been an area of
intensive research, in particular for planar graphs.

Wegner conjectured in 1977 that the square of a planar graph has chro-
matic number at most 3

2
∆(G) + 1 for ∆(G) ≥ 8, a bound that would be best

possible. We show it is at most
(

3
2

+ o(1)
)

∆(G), and indeed this is true for
the list chromatic number and for more general classes of graphs.

In 1984, Borodin formulated a similar conjecture on so-called cyclic colour-
ings of plane graphs, where vertices incident with the same face need to get
different colours. In order to obtain similar asymptotic results for the cyclic
chromatic number, we generalise the concept of distance-two colouring.

More specifically, we study the case that we are given a graph G and
two sets A,B ⊆ V (G) ( not necessarily disjoint ). And the requirement is
to colour the vertices of B so that (i) adjacent vertices get different colours,
and (ii) vertices with a common neighbour from A get different colours. For
planar graph we can give asymptotically best possible upper bounds on the
number of colours required for such colourings ( in terms of the natural degree
condition ).

Douglas B. West, University of Illinois at Urbana-Champaign,
USA

Degree Ramsey and On-line Degree Ramsey numbers

Dating implicitly to Burr, Erdős, and Lovász in 1976, the degree Ramsey
number of a graph G, written dr(G), is the least k such that every 2-coloring
of the edges of some graph with maximum degree k contains a monochromatic
copy of G. The on-line degree Ramsey number, written odr(G), is the least
k such that, by presenting edges one-by-one without ever exceeding degree
k at any vertex, Builder can force Painter (who must color each edge when
it arrives) to produce a monochromatic G. Trivially, odr(G) ≤ dr(G) ≤
R(G,G) − 1. We present a variety of results and problems about these
parameters, particularly for paths, trees, and cycles. This work is joint with
Jane Butterfield, Tracy Grauman, Bill Kinnersley, Kevin Milans, and Chris
Stocker.
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Anders Yeo, Royal Holloway, University of London, UK

(partly joint work with Stephan Thomasse, Michael Henning
and Arezou Soleimanfallah)

Total domination, transversals in hypergraphs and an FPT algorithm!

A set S of vertices in a graph G is a total dominating set of G if every vertex
of G is adjacent to some vertex in S. The minimum cardinality of a total
dominating set is called the total domination number.

A transversal in a hypergraph, H = (V,E), is a set of vertices T ⊆ V ,
such that every edge in E contains at least one vertex from T .

We will both give bounds on the size of transversals in several kind of
hypergraphs and show how these bounds can be used to obtain many different
kind of bounds for the total domination number of a graph with properties
such as (i) minimum degree 3 or 4, (ii) 2-connected, (iii) minimum degree
2, containing no induced 6-cycles and (iv) minimum degree 3, containing no
4-cycle.

As finding transversals in 3-uniform hypergraphs (i.e. all edges contain
3 vertices) has many application, we will also mention a fixed parameter
tractable algorithm for this problem. This algorithm can immediately be used
in areas such as computational biology (related to phylogenetic trees) and
tournaments (finding a minimum feedback vertex set). The time complexity
of our algorithm beats all previously know algorithms.

We finally mention several open problems and conjectures.
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Daniel Younger, University of Waterloo, Canada

(joint work with Bruce Richter and Cândida Nunes da Silva)

Grötzsch’s 3-Colour Theorem in Terms of Integer Flows

Our thread rises from two strands. The first is Carsten Thomassen’s 2003
proof of Grötzsch’s Theorem (1958). What is special about this proof is
that, in place of an appeal to the Euler Polyhedron Formula, Carsten uses
a set of colour restrictions on the boundary of the yet uncoloured submap.
The proof shows how vertices along the boundary are coloured or the un-
coloured submap severed while staying within the set of restrictions. Bruce
Richter and I – coauthors in this research – tried to understand Thomassen’s
technique by constructing a proof using a little different conditions on the
boundary. We were joined in this effort by Cândida Nunes da Silva: her
fundamental contributions got our proof off the ground.

The second strand is the Steinberg-Younger 1989 proof of Grötzsch’s The-
orem in dual form, i. e., in terms of 3-flows. This proof, whose main focus
was upon an extension to the projective plane, centrally appeals to the Euler
Polyhedron Formula. Can this, for the planar case, be replaced by an adapta-
tion of the Thomassen boundary technique? What conditions are maintained
and how is the boundary advanced, in this integer flow context?

This talk describes the proof.
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Manouchehr Zaker, Institute for Advanced Studies in Basic
Sciences, Iran

Lower and upper bounds for chromatic number and some open problems

For any positive integer k and orientation D of a graph G we denote
by ∆k(D) the largest value t for which there exists a directed path P =
v1, v2, . . . , vk such that d+(vk) = t, where d+(vk) stands for the out-degree of
vk. We first obtain an upper bound for the chromatic number of G in terms of
∆k(D). Using this bound we present another upper bound in terms of a new
parameter ∆≺k (G) involving the maximum degrees in G. We compare our
bound with the coloring number bound and discuss the algorithmic aspects
of ∆k(D).

The next set of upper bounds are in terms of girth and the booksize of
graphs. For any two integers 0 ≤ t < k by the booksize bt,k(G) of a graph
G we mean the maximum number of k-cycles say C1, . . . , Cm such that for
some path P of length t, V (Ci) ∩ V (Cj) = V (P ) for any i 6= j. Using this
concept we improve the best known bound in terms of girth for the chromatic
number of graphs when girth is an even integer. We generalize the results
for even-girth of graphs.

Finally we obtain some lower bounds in terms of maximum or average
degree of graphs. We show that for any tree T and integer t the chromatic
number of any (T,K2,t)-free graph is lower bounded by a fraction of average
degree. A lower bound is also given in terms of the maximum even-hole of
graphs.

Xuding Zhu, National Sun Yat-sen University, Taiwan

Bipartite density and bipartite ratio of triangle-free subcubic graphs

This talk shows that if G is a triangle-free graph of maximum degree 3 then G
has an induced bipartite graph with 5|V (G)|/7 vertices, with two exceptions:
the Petersen graph and the dodecahedron. Also G has a spanning bipartite
graph with 17|E(G)|/21 edges with seven exceptional graphs.
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