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Motivation



PM10 data

• Air quality data from Graz, Austria.
• The amount of particulate matter with a diameter of 10 µm or
less (PM10) is measured.

• PM10 can settle in the bronchi and lungs and cause health
problems.

• Data set consists of 182 observation days in the winter season of
2010–2011 (October – March) and the amount of PM10 in µg/m3

is recorded every 30 minutes.
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Raw PM10 data
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Mean PM10 curves
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Functional time series

• We model the PM10 data as a functional time series X1, . . . , X182
where each curve Xt with t = 1, . . . , 182 represents a single day.

• Such segmentation accounts for a daily periodic structure in the
underlying continuous time process.

• There might still remain a periodic signal with respect to the
discrete time parameter t ∈ Z.
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Model

Consider a time series with values in a separable Hilbert space H
given by

Yt = µ+ st + Xt,

where t ∈ Z, µ ∈ H, {st}t∈Z ⊂ H is a deterministic sequence such that

st = st+d and
d∑
t=1

st = 0

for all t ∈ Z with some d > 1 and {Xt}t∈Z is a stationary sequence of
zero mean random elements with values in H.
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Problem

• Our goal is to develop a methodology to detect a periodic
component when d > 1 is not assumed to be known.

• Specifically, we want to test the following hypotheses:
H0 : observations are generated by a stationary sequence (no
periodic component);
H1 : observations are generated by a stationary sequence with a
superimposed deterministic periodic component with an
unknown period d > 1.
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Test statistic



Frequency domain approach

Our methodology is based on the frequency domain approach to the
analysis of functional time series.
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DFT and periodogram

Definition
The DFT of X1, . . . , Xn is defined by

Xn(ω) = n−1/2
n∑
t=1

Xte−itω

with i =
√
−1 for ω ∈ [−π, π] and n ≥ 1.

Definition
The periodogram of X1, . . . , Xn is defined by

In(ω) = Xn(ω)⊗Xn(ω) = ⟨·,Xn(ω)⟩Xn(ω)

for ω ∈ [−π, π] and n ≥ 1.
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Maximum of periodogram

The test statistic is given by

Mn = max
1≤j≤q

|||In(ωj)|||2 = max
1≤j≤q

∥Xn(ωj)∥2

for n > 2, where

i) ||| · |||2 is the Hilbert-Schmidt norm and ∥ · ∥ is the norm induced
by the inner product of H;

ii) ωj = 2πj/n are the Fourier frequencies with 1 ≤ j ≤ q;
iii) q = ⌊(n− 1)/2⌋ ∼ n/2 as n → ∞.
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Asymptotic results



Results in the univariate case

• The usefulness of the maximum of the periodogram for
detecting periodicities is well known [Fisher (1929)].

• First results in the univariate case were established under the
assumption of Gaussianity.

• Davis and Mikosch (1999) established the asymptotic
distribution of the appropriately standardized Mn provided that
E |X1|s < ∞ with s > 2 using a Gaussian approximation
technique due to Einmahl (1989).
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Our results

• Our main result is an extension of the result of Davis and
Mikosch (1999) to real separable Hilbert spaces.

• The main ingredient of our proof is a powerful Gaussian
approximation developed by Chernozhukov, Chetverikov and
Kato (2017).
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Linear processes

Suppose that {Xt}t∈Z is a linear process with values in H given by

Xt =
∞∑

k=−∞

ak(εt−k)

for each t ∈ Z,where

• {ak}k∈Z ⊂ L(H) such that
∑∞

k=−∞ |||ak|||op < ∞;
• {εt}t∈Z are iid zero mean random elements with values in H.
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Notation for linear processes

• The impulse-response operator A(ω) defined by

A(ω) =
∞∑

k=−∞

ake−itω

for ω ∈ [−π, π].
• {λk}k≥1 are the eigenvalues of the covariance operator
E[ε0 ⊗ ε0].
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Assumptions

Assumption 1

i) E ∥ε0∥r < ∞ where r > 2 if dimH < ∞ and r ≥ 4 otherwise;
ii) λk > λk+1 for k ≥ 1;
iii) some conditions on the decay rate of {λk}k≥1 hold.

Assumption 2

i)
∑

k̸=0 log(|k|)|||ak|||op < ∞;
ii) A−1(ω) exists for each ω ∈ [−π, π];
iii) supω∈[0,π] |||A−1(ω)|||op < ∞.
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Main result

Theorem
Suppose that Assumption 1 and Assumption 2 hold. Then

λ−1
1

(
max
1≤j≤q

∥A−1(ωj)Xn(ωj)∥2 − bn
)

d−→ G as n → ∞,

where

• bn = λ1 log q− λ1
∑∞

j=2 log(1− λj/λ1);
• q = ⌊(n− 1)/2⌋;
• G is the standard Gumbel distribution with the CDF given by
F(x) = exp{− exp{−x}} for x ∈ R.
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Assumption for the FAR(1)

Suppose that {Xt}t∈Z is an FAR(1) model given by

Xt = ρ(Xt−1) + εt =
∞∑
j=0

ρj(εt−j)

for t ∈ Z with ρ ∈ L(H) such that |||ρ|||op < 1.

Assumption 3
ρ̂ is an estimator of ρ such that |||ρ̂− ρ|||op = op

(
a−1
n
)
as n → ∞,

where log n ≤ an ≤
√
n.
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Test statistic

Theorem
Suppose that {λ̂j}j≥1 are the eigenvalues of (n− 1)−1∑n

k=2 ε̂k ⊗ ε̂k,
where

ε̂k = Xk − ρ̂ (Xk−1), k = 2, . . . ,n.

Under H0 and Assumptions 1, 2, and 3, we have that

Tn = λ̂−1
1 max

1≤j≤q
∥(I− e−iωj ρ̂ )Yn(ωj)∥2 − log q+

an∑
j=2

log(1− λ̂j/λ̂1)
d−→ G

as n → ∞.
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Empirical study



Simulation setting

• We simulate functional time series that are stationary and
behave similarly as the original PM10 data.

• The periodic component in the simulation study is given by

st(u) = a cos(2πt/d),

where u ∈ [0, 1] and d− 2 is a Poisson distributed random
variable Pλ with λ = 5 or λ = 15.

• We consider the situation when a = 0, 1, 2, where a = 0
corresponds to H0.
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Empirical rejection rates

a = 0 a = 1 a = 2
α 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

λ = 5 n = 100 0.066 0.029 0.004 0.861 0.799 0.670 1.000 0.999 0.993
n = 200 0.082 0.038 0.006 0.989 0.983 0.970 1.000 1.000 1.000
n = 500 0.093 0.054 0.011 1.000 1.000 0.999 1.000 1.000 1.000

λ = 15 n = 100 0.082 0.041 0.005 0.249 0.165 0.071 0.818 0.758 0.606
n = 200 0.071 0.035 0.006 0.569 0.471 0.293 0.985 0.973 0.922
n = 500 0.096 0.045 0.007 0.990 0.978 0.942 1.000 1.000 1.000
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PM10 time series

• We consider the square-root transformation of the PM10 time
series.

• We plot the values of the test statistic

Tn(j) := λ̂−1∥(I− e−iωj ρ̂ )Yn(ωj)∥2 − log q+
an∑
j=2

log(1− λ̂j/λ̂1)

for j = 1, . . . ,q = 87.
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PM10 time series
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PM10 time series

Weekly periodic component
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Daily means of PM10
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Daily means of PM10
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Summary



Concluding remarks

• We propose a general test for periodicities in Hilbert space
valued time series when the length of the period is unknown.

• The test is based on the maximum of the periodogram.
• We establish that the asymptotic distribution of the
appropriately standardized test statistic is the Gumbel
distribution.

• Empirical study shows that the test performs reasonably well
and the analysis of the PM10 time series illustrates the
usefulness of our approach as it is capable of detecting periodic
signals which are not a priori expected.

https://www.stat.ucdavis.edu/~vaidas/

24/24

https://www.stat.ucdavis.edu/~vaidas/

	Motivation
	Test statistic
	Asymptotic results
	Empirical study
	Summary

