A general white noise test based on kernel lag-window estimates of the spectral density operator

Vaidotas Characiejus^a

Joint work with Gregory Rice^b

^aDépartement de mathématique, Université libre de Bruxelles, Belgium http://homepages.ulb.ac.be/~vcharaci/

^bDepartment of Statistics and Actuarial Science, University of Waterloo, Canada

CRoNoS & MDA 2019 Limassol, April 14, 2019

Outline

Problem

Method and test statistic

Simulation study

Summary

Problem

Method and test statistic Simulation study Summary

Definitions and hypothesis

Outline

Problem

Method and test statistic

Simulation study

Summary

Definitions and hypothesis

$\mathbb H\text{-valued}$ time series

 $\{X_t\}_{t\in\mathbb{Z}}$ is a stationary sequence of random elements with values in a real separable Hilbert space \mathbb{H} such that $\mathsf{E} X_0 = 0$.

Definition The autocovariance operators $\{C(j)\}_{j\in\mathbb{Z}}$ of $\{X_t\}_{t\in\mathbb{Z}}$ are defined by $C(j) = E[X_j \otimes X_0] = E[\langle \cdot, X_0 \rangle X_j]$ for $j \in \mathbb{Z}$.

Definitions and hypothesis

$\mathbb H\text{-valued}$ time series

 $\{X_t\}_{t\in\mathbb{Z}}$ is a stationary sequence of random elements with values in a real separable Hilbert space \mathbb{H} such that $\mathsf{E} X_0 = 0$.

Definition

The autocovariance operators $\{C(j)\}_{j\in\mathbb{Z}}$ of $\{X_t\}_{t\in\mathbb{Z}}$ are defined by

$$\mathcal{C}(j) = \mathsf{E}[X_j \otimes X_0] = \mathsf{E}[\langle \cdot, X_0 \rangle X_j]$$

for $j \in \mathbb{Z}$.

Definitions and hypothesis

White noise and hypothesis

Definition

 $\{X_t\}_{t\in\mathbb{Z}}$ is white noise if X_t 's are uncorrelated, i.e. if $\mathcal{C}(j) = 0$ for each $j \neq 0$.

The hypotheses of interest are

 H_0 : C(j) = 0 for all $j \neq 0$ versus H_1 : $C(j) \neq 0$ for some $j \neq 0$.

Definitions and hypothesis

White noise and hypothesis

Definition

 $\{X_t\}_{t\in\mathbb{Z}}$ is white noise if X_t 's are uncorrelated, i.e. if $\mathcal{C}(j) = 0$ for each $j \neq 0$.

The hypotheses of interest are

 H_0 : C(j) = 0 for all $j \neq 0$ versus H_1 : $C(j) \neq 0$ for some $j \neq 0$.

Definitions and hypothesis

Sample autocovariance operators

Definition

The sample autocovariance operators are defined by

$$\hat{\mathcal{C}}_n(j) = n^{-1} \sum_{t=j+1}^n X_t \otimes X_{t-j}$$

for $0 \leq j < n$ and by $\hat{\mathcal{C}}_n(j) = \hat{\mathcal{C}}_n^*(-j)$ for -n < j < 0.

Definitions and hypothesis

Some remarks

- The autocovariance operator at lag |j| < n is estimated using n |j| observations.
- A starting point could be the test statistic given by

$$\sum_{j=1}^{h} \| \hat{\mathcal{C}}_n(j) \|_2^2,$$

where $\| \cdot \|_2$ is the Hilbert-Schmidt norm and *h* should grow to infinity as $n \to \infty$.

Reweighing the norms could potentially increase the performance of the test statistic.

Definitions and hypothesis

Some remarks

- The autocovariance operator at lag |j| < n is estimated using n - |j| observations.
- A starting point could be the test statistic given by

$$\sum_{j=1}^{h} \||\hat{\mathcal{C}}_{n}(j)\||_{2}^{2},$$

where $\| \cdot \|_2$ is the Hilbert-Schmidt norm and *h* should grow to infinity as $n \to \infty$.

Reweighing the norms could potentially increase the performance of the test statistic.

Definitions and hypothesis

Some remarks

- The autocovariance operator at lag |j| < n is estimated using n - |j| observations.
- A starting point could be the test statistic given by

$$\sum_{j=1}^{h} \||\hat{\mathcal{C}}_{n}(j)\||_{2}^{2},$$

where $\| \cdot \|_2$ is the Hilbert-Schmidt norm and *h* should grow to infinity as $n \to \infty$.

 Reweighing the norms could potentially increase the performance of the test statistic.

Definitions and hypothesis

Idea

- We propose a test statistic that is based on the estimation of the spectral density function.
- Such an idea was proposed by Hong (1996) in the univariate setting.

Definitions and hypothesis

Idea

- We propose a test statistic that is based on the estimation of the spectral density function.
- Such an idea was proposed by Hong (1996) in the univariate setting.

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n

Outline

Problem

Method and test statistic

Simulation study

Summary

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n

Spectral density function

Definition

The spectral density function is a discrete-time Fourier transform of $\{\mathcal{C}(j)\}_{j\in\mathbb{Z}}$ defined by

$$\mathcal{F}(\omega) = (2\pi)^{-1} \sum_{j \in \mathbb{Z}} \mathcal{C}(j) e^{-ij\omega}$$

for $\omega \in [-\pi, \pi]$ provided that $\sum_{j \in \mathbb{Z}} \|\mathcal{C}(j)\|_2 < \infty$, where $i = \sqrt{-1}$.

If $\{X_t\}_{t\in\mathbb{Z}}$ is white noise, then $\mathcal{F}(\omega) = (2\pi)^{-1}\mathcal{C}(0)$ for $\omega \in [-\pi,\pi]$.

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n

Spectral density function

Definition

The spectral density function is a discrete-time Fourier transform of $\{\mathcal{C}(j)\}_{j\in\mathbb{Z}}$ defined by

$$\mathcal{F}(\omega) = (2\pi)^{-1} \sum_{j \in \mathbb{Z}} \mathcal{C}(j) e^{-ij\omega}$$

for $\omega \in [-\pi,\pi]$ provided that $\sum_{j \in \mathbb{Z}} \|\mathcal{C}(j)\|_2 < \infty$, where $i = \sqrt{-1}$.

If $\{X_t\}_{t\in\mathbb{Z}}$ is white noise, then $\mathcal{F}(\omega) = (2\pi)^{-1}\mathcal{C}(0)$ for $\omega \in [-\pi,\pi]$.

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n

Distance between $\{X_t\}_{t\in\mathbb{Z}}$ and white noise

The distance is measured by

$$Q^{2} = 2\pi \int_{-\pi}^{\pi} \||\mathcal{F}(\omega) - (2\pi)^{-1} \mathcal{C}(0)\||_{2}^{2} d\omega$$
$$= \sum_{h \neq 0} \||\mathcal{C}(h)\||_{2}^{2}.$$

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n

Hypothesis

The hypothesis that we want to test is as follows

$$H_0$$
 : $Q = 0$ versus H_1 : $Q > 0$.

To perform the test, we need an estimator of Q.

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n

Hypothesis

The hypothesis that we want to test is as follows

$$H_0$$
 : $Q = 0$ versus H_1 : $Q > 0$.

To perform the test, we need an estimator of Q.

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n

Estimator of spectral density function

Definition

The kernel lag-window estimator of the spectral density function is defined by

$$\hat{\mathcal{F}}_n(\omega) = (2\pi)^{-1} \sum_{|j| < n} k(j/p_n) \hat{\mathcal{C}}_n(j) e^{-ij\omega}$$

for $\omega \in [-\pi, \pi]$, where $k : \mathbb{R} \to [-1, 1]$ is a kernel and $\{p_n\}_{n \ge 1}$ is a bandwidth.

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n

Estimator of the distance to white noise

The estimator of Q is defined by

$$\hat{Q}_n^2 = 2\pi \int_{-\pi}^{\pi} \|\hat{\mathcal{F}}_n(\omega) - (2\pi)^{-1} \hat{\mathcal{C}}_n(0)\|_2^2 d\omega$$
$$= 2 \sum_{j=1}^{n-1} k^2 (j/p_n) \|\hat{\mathcal{C}}_n(j)\|_2^2.$$

 $\begin{array}{c} \mbox{Problem} \\ \mbox{Method and test statistic} \\ \mbox{Simulation study} \\ \mbox{Summary} \end{array} \begin{array}{c} \mbox{Distance to white noise} \\ \mbox{Test statistic} T_n \\ \mbox{Asymptotic behaviour of T_n} \\ \mbox{Asymptotic behaviour of T_n} \end{array}$

Test statistic

We propose to use the test statistic T_n defined by

$$T_n = T_n(k, p_n) = \frac{\hat{\sigma}_n^4}{\|\|\hat{\mathcal{C}}_n(0)\|\|_2^2} \cdot \frac{2^{-1}n\hat{\sigma}_n^{-4}\hat{Q}_n^2 - C_n(k)}{\sqrt{2D_n(k)}}$$

for $n \geq 1$, where $\hat{\sigma}^2 = n^{-1} \sum_{t=1}^n \|X_t\|^2$,

$$C_n(k) = \sum_{j=1}^{n-1} (1 - j/n) k^2 (j/p_n),$$

$$D_n(k) = \sum_{j=1}^{n-2} (1 - j/n) (1 - (j+1)/n) k^4 (j/p_n).$$

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n

Asymptotic distribution of the statistic

Theorem

Suppose that

- (i) $\{X_t\}_{t\in\mathbb{Z}}$ are iid \mathbb{H} -valued random elements such that $\mathsf{E} X_0 = 0$ and $\mathsf{E} ||X_0||^4 < \infty$;
- (ii) k is an even function that is continuous at zero and at all but finite number of points, with k(0) = 1 and $k(x) = O(x^{-\alpha})$ for some $\alpha > 1/2$ as $x \to \infty$;

(iii)
$$p_n \to \infty$$
 and $p_n/n \to 0$ as $n \to \infty$.
Then

$$T_n \xrightarrow{d} N(0,1)$$

as $n \to \infty$.

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n

Consistency of the test

Theorem

Suppose that

 (i) {X_t}_{t∈Z} is a fourth order stationary sequence of zero mean *ℍ*-valued random elements such that ∑_{j=-∞}[∞] |||C(j)|||₁² < ∞ and sup_{j∈Z} ∑_{h=-∞}[∞] |||K_{h+j,h,j}|||₁ < ∞, where ||| · |||₁ is the nuclear norm and {K_{j1,j2,j3}}_{j1,j2,j3∈Z} are the fourth order cumulant operators;

(ii)
$$p_n \to \infty$$
 and $p_n/n \to 0$ as $n \to \infty$.
Then

$$(p_n^{1/2}/n)T_n \xrightarrow{p} \frac{2^{-1}Q^2}{\||\mathcal{C}(0)\||_2^2 [2D(k)]^{1/2}}$$

as $n \to \infty$.

Setup Results Transformation of test statistic

Outline

Problem

Method and test statistic

Simulation study

Summary

Setup Results Transformation of test statistic

Simulation setup

We investigate the case when $\mathbb{H} = L^2([0, 1], \mathbb{R})$.

- The following data generating processes are considered (i) IID-BM;
- (ii) fGARCH(1,1) (Aue, Horváth, and Pellatt (2016));
- (iii) FAR(1, S)-BM with the kernel of the operator given by $\varphi_c(t, s) = c \exp\{(t^2 + s^2)/2\}$ for $t, s \in [0, 1]$ and the constant c is chosen so that $\|\varphi_c\| = S \in (0, 1)$.

Setup Results Transformation of test statistic

Simulation setup

We investigate the case when $\mathbb{H} = L^2([0,1],\mathbb{R})$.

The following data generating processes are considered

- (i) IID-BM;
- (ii) fGARCH(1,1) (Aue, Horváth, and Pellatt (2016));
- (iii) FAR(1, S)-BM with the kernel of the operator given by $\varphi_c(t, s) = c \exp\{(t^2 + s^2)/2\}$ for $t, s \in [0, 1]$ and the constant c is chosen so that $\|\varphi_c\| = S \in (0, 1)$.

Setup Results Transformation of test statistic

Kernels

Setup Results Transformation of test statistic

Bandwidth selection

Similarly as in Bühlmann (1996), we consider bandwidths of the form

$$p_n = n^{1/(2q+1)}$$
 and $p_n = \hat{M} n^{1/(2q+1)}$,

where

• q is the largest positive integer such that

$$\lim_{u \to 0} \{ |u|^{-q} [1 - k(u)] \}$$

exists, is finite and nonzero;

• \hat{M} is a constant estimated from the data.

Setup **Results** Transformation of test statistic

Monte Carlo simulation

DGP:	IID-BM					f	GARC	H(1,1)	FAR(1,0.3)-BM				
	<i>n</i> =	100	n = 250			n = 100		n = 250		<i>n</i> = 100		<i>n</i> = 250		
Stat/Nominal Size	5%	1%	5%	1%		5%	1%	5%	1%	5%	1%	5%	1%	
$T_n(k_B, n^{1/3})$	50	23	67	34		113	71	142	78	824	749	995	993	
$T_n(k_B, \hat{M}n^{1/3})$	58	24	70	43		110	72	118	73	860	786	998	997	
$T_n(k_P, n^{1/5})$	57	23	63	38		110	72	130	74	868	788	997	996	
$T_n(k_P, \hat{M}n^{1/5})$	58	22	68	41		111	73	121	71	851	776	997	997	
$T_n(k_D, n^{1/5})$	54	24	63	36		112	69	134	76	860	782	997	995	
$T_n(k_D, \hat{M}n^{1/5})$	58	21	71	29		112	70	127	71	833	761	998	994	
$Z_n(10)$	48	9	49	11		50	12	41	5	708	386	992	913	
BCDn	9	0	25	5		24	4	37	4	124	43	376	174	

Setup Results Transformation of test statistic

Transformation of test statistic

Chen and Deo (2004) suggest to use the power transformation

$$T_{n}^{\beta} = \frac{(2^{-1}n\hat{\sigma}_{n}^{-4}\hat{Q}_{n}^{2})^{\beta} - [C_{n}^{\beta}(k) + 2^{-1}\beta(\beta-1)C_{n}^{\beta-2}(k)\hat{\sigma}_{n}^{-8}||\hat{C}_{n}(0)||_{2}^{4}2D_{n}(k)]}{\beta C_{n}^{\beta-1}(k)\hat{\sigma}_{n}^{-4}||\hat{C}_{n}(0)||_{2}^{2}[2D_{n}(k)]^{1/2}}$$

for $n \geq 1$ and $\beta \neq 0$.

The delta method implies that $T_n^{\beta} \xrightarrow{d} N(0,1)$ as $n \to \infty$ for $\beta \neq 0$.

Problem Setu Method and test statistic Res Simulation study Tra

Setup Results Transformation of test statistic

Transformation of test statistic

Chen and Deo (2004) suggest to use the power transformation

$$T_n^{\beta} = \frac{(2^{-1}n\hat{\sigma}_n^{-4}\hat{Q}_n^2)^{\beta} - [C_n^{\beta}(k) + 2^{-1}\beta(\beta - 1)C_n^{\beta - 2}(k)\hat{\sigma}_n^{-8} \||\hat{C}_n(0)\||_2^4 2D_n(k)]}{\beta C_n^{\beta - 1}(k)\hat{\sigma}_n^{-4} \||\hat{C}_n(0)\||_2^2 [2D_n(k)]^{1/2}}$$

for $n \ge 1$ and $\beta \ne 0$.

The delta method implies that $T_n^{\beta} \xrightarrow{d} N(0,1)$ as $n \to \infty$ for $\beta \neq 0$.

Setup Results Transformation of test statistic

•

Approximate skewness

The approximate skewness of T_n^β is equal to 0 provided that

$$\beta_1^* = 1 - \frac{2}{3} \frac{\left[\sum_{j=1}^{n-1} k^2(j/p_n)\right]\left[\sum_{j=1}^{n-1} k^6(j/p_n)\right]}{\left[\sum_{j=1}^{n-1} k^4(j/p_n)\right]^2}$$

Setup Results Transformation of test statistic

Monte Carlo simulation (cont.)

DGP:		IID-	BM		f	GARC	H(1,1)	FAR(1,0.3)-BM				
	n = 100		n = 250		-	<i>n</i> = 100		n = 250		 n = 10		n = 250	
Stat/Nominal Size	5%	1%	5%	1%		5%	1%	5%	1%	5%	1%	5%	1%
$T_n(k_B, n^{1/3})$	50	23	67	34		113	71	142	78	824	749	995	993
$T_n(k_B, \hat{M}n^{1/3})$	58	24	70	43		110	72	118	73	860	786	998	997
$T_n(k_P, n^{1/5})$	57	23	63	38		110	72	130	74	868	788	997	996
$T_n(k_P, \hat{M}n^{1/5})$	58	22	68	41		111	73	121	71	851	776	997	997
$T_n(k_D, n^{1/5})$	54	24	63	36		112	69	134	76	860	782	997	995
$T_n(k_D, \hat{M}n^{1/5})$	58	21	71	29		112	70	127	71	833	761	998	994
$T_n^{\beta_1^*}(k_B, n^{1/3})$	34	6	51	14		91	41	112	35	793	611	995	977
$T_n^{\beta_1^*}(k_B, \hat{M}n^{1/3})$	36	8	52	14		86	34	93	25	822	629	997	988
$T_n^{\beta_1^*}(k_P, n^{1/5})$	38	10	53	13		87	35	110	31	834	634	997	990
$T_n^{\beta_1^*}(k_P, \hat{M}n^{1/5})$	34	7	53	14		86	35	95	25	812	629	997	989
$T_n^{\beta_1^*}(k_D, n^{1/5})$	32	6	53	12		80	33	102	28	815	610	997	985
$T_n^{\beta_1^*}(k_D, \hat{M}n^{1/5})$	37	4	53	12		82	30	97	23	800	603	997	976
$Z_n(10)$	48	9	49	11		50	12	41	5	708	386	992	913
BCDn	9	0	25	5		24	4	37	4	124	43	376	174

Summary

Outline

Problem

Method and test statistic

Simulation study

Summary

Summary

Summary

- \blacksquare A general test for white noise for $\mathbb H\text{-valued}$ time series.
- The asymptotic distribution under independence and the consistency of the test.
- The transformed test statistic has good size.
- Better power against functional autoregressive alternatives compared to the existing tests.
- Not well sized for general weak white noise in function space such as for functional GARCH processes.

http://homepages.ulb.ac.be/~vcharaci/