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Motivation

Problem



Periodic signals

• Periodicities are one of the most important characteristics of
time series.

• The interest to detect, analyze and model periodicities goes
back to the very origins of the field (Schuster [1898],
Walker [1914], Yule [1927], Fisher [1929], etc.).
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Our goal

• Major advances in data collection technology leads to new
challenges and at the same time to new methodologies as well
as a better understanding of the underlying periodic structure.

• The focus of the talk will be detection, analysis and estimation
of periodic signals in a sequence of functional data.
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Motivation

Data example



PM10 data

• Air quality data from Graz, Austria.
• The amount of particulate matter with a diameter of 10 µm or
less (PM10) is measured.

• PM10 can settle in the bronchi and lungs and cause health
problems.

• Starting on February 18, 2010, the amount of PM10 in µg/m3 is
recorded every 30 minutes resulting in 48 observations per day.

• Our data set contains observations from February 18, 2010 until
January 27, 2021 (3997 observation days or almost 11 observation
years in total).
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Raw data
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Weekly mean curve
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Motivation

Our approach



The PM10 data as a sequence of curves

We investigate the PM10 data as a functional time series, i.e. as a
sequence of daily curves.
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Functional time series

• A functional time series is a sequence {Xt}t∈Z such that each Xt
is a curve {Xt(u)}u∈[0,1].

• We separate a continuous time process {ξ(u)}u∈R using natural
consecutive intervals, i.e.

Xt(u) = ξ(t+ u)

for u ∈ [0, 1] and t ∈ Z.
• Such segmentation accounts for a periodic structure in the
underlying continuous time process.

• There might still remain a periodic signal with respect to the
discrete time parameter t ∈ Z.
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Model

Consider the time series {Xt}t∈Z with values in a real separable
Hilbert space H defined by

Xt = µ+ st + Yt

for each t ∈ Z, where

• µ ∈ H;
• {st}t∈Z ⊂ H is a deterministic sequence such that

st = st+T and
T∑
t=1

st = 0

for all t ∈ Z with some T ≥ 2;
• {Yt}t∈Z is a stationary sequence of zero mean random elements
with values in H.
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Hypothesis testing

• We develop a methodology to detect a periodic signals in Hilbert
space value time series when T ≥ 2 is not assumed to be known.

• Specifically, we want to test the following hypotheses:
H0 : observations are generated by a stationary sequence (no
periodic component);
H1 : observations are generated by a stationary sequence with a
superimposed deterministic periodic component with an
unknown period T ≥ 2.
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Main results



Main results

Test statistic



Frequency domain approach

Our methodology is based on the frequency domain approach to the
analysis of functional time series.
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DFT and periodogram

Definition
The DFT of X1, . . . , Xn is defined by

Xn(ωj) = n−1/2
n∑
t=1

Xte−itωj

where n ≥ 1, i =
√
−1, j = −⌊(n− 1)/2⌋, . . . , ⌊n/2⌋ and ωj = 2πj/n.

Definition
The periodogram operator of X1, . . . , Xn is defined by

In(ωj) = Xn(ωj)⊗Xn(ωj) = ⟨·,Xn(ωj)⟩Xn(ωj),

where n ≥ 1, j = −⌊(n− 1)/2⌋, . . . , ⌊n/2⌋ and ωj = 2πj/n.
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Maximum of periodogram

The test statistic is given by

Mn = max
1≤j≤q

∥In(ωj)∥op = max
1≤j≤q

∥Xn(ωj)∥2

for n > 2, where

i) ∥ · ∥op is the operator norm;
ii) ωj = 2πj/n are the Fourier frequencies with 1 ≤ j ≤ q;
iii) q = ⌊n/2⌋;
iv) ∥ · ∥ is the norm induced by the inner product of H.
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Maximum of periodogram

The test statistic is given by

Mn = max
1≤j≤q

∥In(ωj)∥op = max
1≤j≤q

∥Xn(ωj)∥2

for n > 2.

• Small values of Mn indicate that there is no periodic component.
• Large values of Mn indicate that there is a periodic component.
• We need a criterion to decide when Mn is small and when Mn is
large.
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Periodogram of PM10
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Periodogram of PM10
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Periodogram of PM10 without the largest value
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Results under Gaussianity in the univariate case

• The usefulness of the maximum of the periodogram for
detecting periodicities is well known (Fisher [1929]).

• First results were established under the assumption of
Gaussianity.

• An alternative approach is to establish the asymptotic
distribution of the appropriately standardized Mn under some
general conditions.
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Results under Gaussianity in the univariate case (cont.)

If X1, . . . , Xn are iid standard normal random variables,

Mn − log q d−→ G as n→ ∞,

where q = ⌊n/2⌋ and G is the standard Gumbel distribution with the
CDF given by

F(x) = exp{− exp−x}

for x ∈ R.
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General results in the univariate case

• Walker [1965] conjectured that the same result holds provided
that the moments up to some sufficiently high order exist.

• Walker [1965] also stated that no proof was known at the time
and that the problem of constructing one is undoubtedly
extremely difficult.

• Davis and Mikosch [1999] proved that the limit indeed remains
the same provided that E|X1|s < ∞ with some s > 2 using a
Gaussian approximation technique due to Einmahl [1989].
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Main results

Asymptotic distribution of the test statistic



Our results

• Our main result is an extension of the result of Davis and
Mikosch [1999] to real separable Hilbert spaces.

• The main ingredient of our proof is a powerful Gaussian
approximation developed by Chernozhukov, Chetverikov, and
Kato [2017].

• Our results allow us to propose several methodologies to detect
periodic signals in Hilbert space valued time series when the
length of the period is unknown.
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Linear processes

Suppose that {Yt}t∈Z is a linear process with values in H given by

Yt =
∞∑

k=−∞

ak(εt−k)

for each t ∈ Z, where

• {ak}k∈Z ⊂ L(H) such that
∑∞

k=−∞ ∥ak∥op < ∞;
• {εt}t∈Z are iid zero mean random elements with values in H.
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Notation for linear processes

• A(ω) denotes the impulse-response operator given by

A(ω) =
∞∑

k=−∞

ake−itω

for ω ∈ [−π, π].
• {λk}k≥1 are the eigenvalues of the autocovariance operator
E[ε0 ⊗ ε0].
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Assumptions

Assumption 1

i) E∥ε0∥r < ∞ where r > 2 if dimH < ∞ and r ≥ 4 otherwise;
ii) the eigenvalues λk are distinct and the sequence {kλk}k≥1 is

ultimately non-increasing;
iii) some further conditions on the decay rate of {λk}k≥1.

Assumption 2

i)
∑

k̸=0 log(|k|)∥ak∥op < ∞;
ii) A−1(ω) exists for each ω ∈ [−π, π];
iii) supω∈[0,π] ∥A−1(ω)∥op < ∞.
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Main result

Theorem
Under H0 and Assumptions 1 and 2, we have that

λ−1
1

(
max
1≤j≤q

∥A−1(ωj)Xn(ωj)∥2 − bn
)

d−→ G as n→ ∞,

where

• q = ⌊n/2⌋;
• bn = λ1 log q− λ1

∑∞
j=2 log(1− λj/λ1);

• G is the standard Gumbel distribution with the CDF given by
F(x) = exp{− exp{−x}} for x ∈ R.
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Assumption for the FAR(1)

Suppose that {Yt}t∈Z is an FAR(1) model given by

Yt = ρ(Yt−1) + εt =
∞∑
j=0

ρj(εt−j)

for t ∈ Z with ρ ∈ L(H) such that ∥ρn0∥op < 1 with some n0 ≥ 1.

Assumption 3
ρ̂ is an estimator of ρ such that ∥ρ̂− ρ∥op = op(τ−1n ) as n→ ∞,
where log n ≤ an <

√
n.
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Test statistic

Theorem
Suppose that {λ̂j}j≥1 are the eigenvalues of (n− 1)−1

∑n
k=2 ε̂k ⊗ ε̂k,

where
ε̂k = Xk − ρ̂ (Xk−1), k = 2, . . . ,n.

Under H0 and Assumptions 1, 2, and 3, we have that

Gn = λ̂−1
1 max

1≤j≤q
∥(I− e−iωj ρ̂ )Xn(ωj)∥2 − log q+

τn∑
j=2

log(1− λ̂j/λ̂1)
d−→ G

as n→ ∞.
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Representation of periodic signals

Lemma
Suppose that {st}t∈Z is a deterministic sequence with values in H
such that

st = st+T and
T∑
t=1

st = 0

for all t ∈ Z with some T ≥ 2. Then there exist w11, . . . ,w1⌊T/2⌋ ∈ H
and w21, . . . ,w2⌊T/2⌋ ∈ H such that

st =
⌊T/2⌋∑
k=1

[cos(2πkt/T)w1k + sin(2πkt/T)w2k]

for all t ∈ Z.
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Consistency

Theorem
Suppose that

∥w11 + w21 − cos(ω⌊n/T⌋)ρ̂(w11 + w21)− sin(ω⌊n/T⌋)ρ̂(w11 − w21)∥

is ultimately bounded away from zero in probability, where
w11,w21 ∈ H come from the general expression of a periodic
sequence {st}t≥1 ⊂ H. Then under H1 we have that

Gn/ℓn
P→ ∞ as n→ ∞

for any positive sequence ℓn = o(n) as n→ ∞.
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Empirical study



Empirical study

Simulation study



Simulation setting

• We simulate functional time series that are stationary and
behaves similarly as the original PM10 data.

• The periodic component in the simulation study is given by

st(u) = a cos(2πt/d),

where u ∈ [0, 1] and d− 2 is a Poisson distributed random
variable Pλ with λ = 5 or λ = 15.

• a is equal to 0 (no periodic signal), 1 or 2.
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Empirical rejection rates

a = 0 (≡ H0) a = 1 a = 2
α 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

λ = 5 n = 100 0.049 0.022 0.004 0.867 0.805 0.670 1.000 0.999 0.994
n = 200 0.074 0.034 0.005 0.990 0.983 0.972 1.000 1.000 1.000
n = 500 0.091 0.052 0.011 1.000 1.000 0.999 1.000 1.000 1.000

λ = 15 n = 100 0.067 0.030 0.004 0.260 0.172 0.072 0.837 0.773 0.629
n = 200 0.069 0.030 0.006 0.585 0.488 0.312 0.987 0.975 0.926
n = 500 0.093 0.044 0.007 0.990 0.979 0.946 1.000 1.000 1.000
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Empirical study

The analysis of the PM10 data



Transforming data into curves

• The data is preprocessed in the following way:
• the missing values are linearly interpolated;
• the negative values are set to 0 so that the square root
transformation can be performed;

• the raw observations are transformed into curves using the R
package fda and the function Data2fd() with 21 Fourier basis
functions.

• We use the PCA based estimator of ρ (Bosq [2000]).
• The tuning parameter kn which determines the number of
principal components used in the estimation procedure is
selected so that kn principal components explain more than
99% of the variance in our dataset.
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PM10 time series

• Instead of just reporting the value of the test statistic or the
p-value, we plot the points (j,Gn(j)) with j = 1, . . . , q = 1998 and

Gn(j) := λ̂−1
1 ∥(I− e−iωj ρ̂ )(Xn(ωj))∥2 − log q+

an∑
j=2

log(1− λ̂j/λ̂1),

where n = 3997.
• Observe that

Gn = max
1≤j≤q

Gn(j).
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PM10 time series
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Weekly periodic component
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Periodic component
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Periodic component
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Periodic component
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Periodic component
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Future work and summary



Concluding remarks

• A general test for periodic signals in Hilbert space valued time
series when the length of the period is unknown.

• The appropriately standardized maximum of the periodogram
converges in distribution to the standard Gumbel distribution.

• Very good finite sample performance.
• A weekly as well as a yearly periodic components are detected
in the PM10 data.

• The periodic signals in the PM10 data are not pure sinusoids but
actually superposition of several sinusoids.

https://imada.sdu.dk/~characiejus/
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