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Smoothed periodogram estimator of
the long-run variance



Stationary sequences and their autocovariances

Definition
{Xt}t∈Z is a stationary sequence of random variables if

(a) E |Xt|2 < ∞ for all t ∈ Z;
(b) E Xt = µ for all t ∈ Z;
(c) Cov(Xr, Xs) = Cov(Xr+t, Xs+t) for all r, s, t ∈ Z.

Definition
For a stationary sequence {Xt}t∈Z,

γ(h) := Cov(Xh, X0) with h ∈ Z

is the sequence of autocovariances.
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Long-run variance

Definition
For a stationary sequence {Xt}t∈Z with

∑∞
h=1 |γ(h)| < ∞,

σ2∞ :=
∑
h∈Z

γ(h) = γ(0) + 2
∞∑
h=1

γ(h)

is the long-run variance (LRV) of {Xt}t∈Z.

• For an uncorrelated sequence {Xt}t∈Z,

Var X̄n =
γ(0)
n for n ≥ 1.

• For a stationary sequence {Xt}t∈Z with
∑∞

h=1 |γ(h)| < ∞,

Var X̄n ∼ σ2∞
n as n→ ∞.
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Spectral density

The LRV is typically estimated nonparametrically in the frequency
domain.
Definition
For a stationary sequence {Xt}t∈Z with

∑∞
h=1 |γ(h)| < ∞,

f(λ) := 1
2π

∞∑
h=−∞

γ(h)e−ihλ for λ ∈ [−π, π]

is the spectral density of {Xt}t∈Z, where i =
√
−1 .

Observe that
σ2∞ = 2πf(0)

and hence we can estimate the LRV by estimating f(0).
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Discrete Fourier transform and the periodogram

Definition
The discrete Fourier transform (DFT) and the periodogram of
X1, . . . , Xn with n ≥ 1 are defined as

Xn(ωj) :=
1√
2πn

n∑
t=1

Xte−itωj and In(ωj) := |Xn(ωj)|2,

respectively, where ωj = 2πj/n with j ∈ {−⌊(n− 1)/2⌋, . . . , ⌊n/2⌋}
are the Fourier frequencies and i =

√
−1.

The periodogram can be viewed as the sample spectral density since

In(ωj) =
1
2π

n−1∑
h=−(n−1)

γ̂(h)e−ihωj ,

where γ̂(h) := n−1
∑n−h

t=1 Xt+hXt for h ≥ 0 and γ̂(h) = γ̂(−h) for h < 0.
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Smoothed periodogram estimator

• The periodogram is not a consistent estimator of the spectral
density function.

• A simple consistent estimator of the spectral density function is
obtained by smoothing of the periodogram in the following way

f̂(λ) = 1
2π

1
2m+ 1

∑
|j|≤m

In(g(n, λ) + ωj),

where m = mn → ∞ but m = o(n) as n→ ∞ and g(n, λ) is the
multiple of 2π/n closest to λ ∈ [−π, π].
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Smoothed periodogram estimator of LRV

• We consider the smoothed periodogram estimator of the LRV
given by

Qn =
1
m

m∑
j=1

In(ωj),

where m = mn → ∞ but m = o(n) as n→ ∞.
• We extend the asymptotic normality of Qn to general nonlinear
moving averages, a result previously available only for linear
processes.

• Because Qn relies on a narrow band of local Fourier
frequencies, it is particularly relevant for local Whittle
estimation of the Hurst exponent. We illustrate this with an
application to change point analysis.
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Weakly dependent nonlinear
processes



Linear process

Definition
{Xt}t∈Z is a linear process if

Xt =
∞∑
j=0

ajεt−j for each t ∈ Z,

where

• {aj}j≥0 ⊂ R is such that
∑∞

j=0 a2j < ∞;
• {εt}t∈Z is a sequence of independent and identically distributed
random variables with E ε0 = 0 and E ε20 < ∞.

The asymptotic normality of Qn under the assumption of linearity
follows from the central limit theorem for weighted sums of
periodogram ordinates established by Giraitis and Koul (2013).

8/24



Nonlinear moving average

Many commonly considered stationary processes are nonlinear (for
example, bilinear, threshold, GARCH, stochastic volatility models)
and not covered by the currently existing asymptotic results.

Definition
{Xt}t∈Z is a nonlinear moving average if

Xt = g(εt, εt−1, . . .) for each t ∈ Z, (1)

where

• g : S∞ → R is a measurable function;
• {εt}t∈Z is a sequence of independent and identically distributed
random elements with values in a measurable space S.
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Lp-m-approximable nonlinear moving average

Consider a modified version of the nonlinear moving average in (1)
defined by

X(m)
t = g(εt, . . . , εt−m+1, ε

′
t−m, ε

′
t−m−1, . . .),

where {ε′t}t∈Z is an independent copy of {εt}t∈Z.

Definition
A nonlinear moving average is Lp-m-approximable if

∞∑
t=1

∥Xt − X(t)t ∥p < ∞

with p ≥ 1, where ∥ · ∥p = (E | · |p)1/p.

Hörmann and Kokoszka (2010)

10/24



Limiting distribution of the
estimator



Assumption

Assumption 1
{Xt}t∈Z is a nonlinear moving average and

∥Xt − X(m)
t ∥4 = O(m−η) as m→ ∞ (2)

with some η > 3.

Assumption 1 implies that

• {Xt}t∈Z is L4-m-approximable;
•
∑∞

h=1 hr|γ(h)| < ∞ for 0 ≤ r < η − 1.
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Main result

Theorem 1
Let {Xt}t∈Z be a nonlinear moving average such that E X0 = 0 and
E |X0|4 < ∞. Suppose that Assumption 1 is satisfied and m→ ∞
but m = o(n4/5) as n→ ∞. Then

√
m

f(0) [Qn − f(0)] D−→ N(0, 1) as n→ ∞.

The key component of the proof is a general central limit theorem
for quadratic forms established by Liu and Wu (2010) (see Theorem 6
therein).
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Application to change point analysis



Long-range dependent and change point models

• Long-range dependent and change point models can produce
similar patterns in time plots, autocovariances, and spectra
despite being fundamentally different.

• Several approaches have been proposed to distinguish between
long-range dependence and change-point models (for example,
Baek and Pipiras (2012) and Norwood and Killick (2018)).

• We show that the approach of Baek and Pipiras (2012) is
applicable also to nonlinear moving averages satisfying the
assumptions of Theorem 1.
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Change point model

The observations X1, . . . , Xn satisfy

Xt =

µ+ Rt, 1 ≤ t ≤ n⋆,
µ+∆+ Rt, n⋆ + 1 ≤ t ≤ n,

(3)

where

• µ is the base level mean;
• ∆ is the magnitude of change at an unknown change point n⋆;
• {Rt}t∈Z is a weakly dependent stationary sequence.
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Hurst exponent

Definition 2
Suppose {Xt}t∈Z is a stationary sequence of random variables. If
its spectral density satisfies

f(λ) = |λ|1−2Hg(λ)

with some 0 < H < 1, where g is a continuous function on [−π, π]

with g(λ) > 0 in the neighbourhood of λ = 0, then H is called the
Hurst exponent of {Xt}t∈Z.

• If H = 1/2, {Xt}t∈Z is called short-range or weakly dependent.
• If H > 1/2, {Xt}t∈Z is called long-range dependent.
• Observe that if H > 1/2, then f(λ) → ∞ as λ → 0.
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Change point versus long-range dependence

The objective is to test

H0 : model (3) holds with {Rt}t∈Z satisfying Definition 2 with H = 1/2

versus

H1 : {Xt}t∈Z satisfies Definition 2 with H > 1/2.
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Local Whittle estimator of the Hurst exponent

Definition
The local Whittle estimator (LWE) of the Hurst exponent H is
defined as

Ĥ = argmin
H∈Θ

L(H)

where Θ = [∆1,∆2] with 0 < ∆1 < ∆2 < 1,

L(H) = log
{ 1
m

m∑
l=1

ω2H−1l In(ωl)
}
− (2H− 1) 1m

m∑
l=1

logωl,

and m is the number of low frequencies used in the estimation.

∆1 and ∆2 can be taken arbitrarily near 0 and 1, or set to reflect
prior beliefs (e.g., ∆1 = 1/2).

Robinson (1995)
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Change point

A potential change point can severely bias the LWE so its effect is
removed by considering the residuals

R̂t =

Xt − n̂−1
∑n̂

i=1 Xi, 1 ≤ t ≤ n̂,
Xt − (n− n̂)−1

∑n
i=n̂+1 Xi, n̂+ 1 ≤ t ≤ n,

where n̂ is the standard CUSUM estimator

n̂ = min
{
k :

∣∣∣ k∑
j=1

Xj −
k
n

n∑
j=1

Xj
∣∣∣ = max

1≤s≤n

∣∣∣ s∑
j=1

Xj −
s
n

n∑
j=1

Xj
∣∣∣}.
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Test statistic

The test statistic is

T(R̂) = 2
√
m
(
Ĥ(R̂) − 1

2

)
,

where Ĥ(R̂) is the LWE based on the residuals {R̂t}1≤t≤n.
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Distribution under H0

Theorem 3
Suppose that model (3) holds with {Rt}1≤t≤n satisfying ER0 = 0
and E |R0|4 < ∞ and Assumption 1. In addition, assume that

(a) n⋆ = ⌊nθ⌋ with some θ ∈ (0, 1);
(b) the change in mean level ∆ = ∆(n) and the change point

estimator n̂ satisfy

n∆2 → ∞, ∆2|n̂− n⋆| = Op(1) as n→ ∞;

(c)
1
m +

m5(logm)2

n4 +
m(logm)2

n∆2 → 0 as n→ ∞.

Then T(R̂) D−→ N (0, 1) as n→ ∞.
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Idea of the proof of Theorem 3

The proof of Theorem 3 can be reduced to known arguments,
Theorem 1 and the following convergence that we establish for
nonlinear moving averages and under certain additional
assumptions

1√
m

∑
j=1

νl,m

( In(ωj)
f(0) − 1

)
D−→ N (0, 1) as n→ ∞,

where

νl,m = log l− 1
m

m∑
l′=1

log l′

are the specific weigths that follow from the LWE.
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Rejection rule

Provided that certain assumptions hold,

T(R̂) D−→ N (0, 1) as n→ ∞

under the null hypothesis and hence we reject the null hypothesis if

T(R̂) > z1−α,

where z1−α is the (1− α)th quantile of the standard normal
distribution.
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GARCH

Definition
{Rt}t∈Z is said to be a GARCH(1, 1) process if it satisfies the
equations

Rt = σtεt, σ2t = α0 + α1R2t−1 + β1σ
2
t−1,

where

• α0 > 0, α1, β1 ≥ 0, α1 + β1 < 1;
• {εt}t∈Z are independent and identically distributed random
variables such that E ε0 = 0, E ε20 = 1, and E ε40 < ∞.

• α1 + β1 < 1⇒ the GARCH(1, 1) process has a stationary solution.
• ER40 ⇐⇒ E |β1 + α1ϵ20|2 < 1
• E |β1 + α1ϵ20|2 < 1 =⇒ Assumption 1.
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Empirical size

Nominal size 1% 5% 10%
n 1000 5000 10000 1000 5000 10000 1000 5000 10000

∆ = 0.30, θ = 0.25
m = n0.60 0.90 1.12 1.68 4.00 5.00 6.48 7.86 9.96 11.56
m = n0.70 0.92 1.18 1.46 3.98 5.00 5.58 7.86 9.68 9.90

∆ = 0.30, θ = 0.50
m = n0.60 0.64 0.68 0.78 3.14 3.36 4.20 6.26 6.58 8.28
m = n0.70 0.80 0.70 0.98 3.38 3.96 4.06 6.68 7.36 7.66

∆ = 0.30, θ = 0.75
m = n0.60 0.76 1.08 1.72 3.66 5.02 5.96 7.26 10.00 11.08
m = n0.70 0.80 1.12 1.62 3.88 4.90 5.66 7.80 9.38 10.18

∆ = 0.60, θ = 0.25
m = n0.60 1.68 1.76 1.58 6.24 6.04 6.00 11.12 11.10 11.32
m = n0.70 1.52 1.44 1.64 5.70 6.06 6.04 10.78 11.04 10.24

∆ = 0.60, θ = 0.5
m = n0.60 0.78 0.74 0.72 3.82 3.74 4.32 7.68 7.24 8.62
m = n0.70 0.86 0.84 1.00 3.98 4.18 4.20 7.60 7.82 8.12

∆ = 0.60, θ = 0.75
m = n0.60 1.58 1.82 1.66 6.16 6.32 6.26 10.84 11.14 11.46
m = n0.70 1.32 1.58 1.94 5.86 6.12 5.98 10.86 10.48 10.66



Summary



Summary

• We consider the smoothed periodogram estimator of the
long-run variance.

• The limiting distribution of the estimator is derived for
nonlinear moving averages, a result previously available only for
linear processes.

• We demonstrate how our result can be used in local Whittle
estimation of the Hurst exponent and in distinguishing
long-range dependence from change point models.

• For more details, see Characiejus, Kokoszka, and Meng (2025).

https://imada.sdu.dk/u/characiejus/

https://imada.sdu.dk/u/characiejus/
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