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Smoothed periodogram estimator of
the long-run variance



Stationary sequences and their autocovariances

Definition

{Xt}tez is a stationary sequence of random variables if

(@) E|Xt|> < 0o forall t € Z;
(b) EX; = pforallt € Z;
(c) Cov(Xr,Xs) = Cov(Xrit,Xs1t) forallr,s,t € Z.

Definition
For a stationary sequence {X; }tez,

y(h) = Cov(Xn, Xo) With heZ

is the sequence of autocovariances.
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Long-run variance

Definition
For a stationary sequence {X;}tez with 372 |[v(h)] < oo,

05 = Y _v(h) =7(0) +2) ~(h)
hez h=1

is the long-run variance (LRV) of {X}tez.

- For an uncorrelated sequence {X; }tez,
- 0
Var X, = V(n) for n>1.

- For a stationary sequence {X:}tez with Y72, [v(h)] < oo,

— 0'2
Vaanrv#’o as n — oo.
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Spectral density

The LRV is typically estimated nonparametrically in the frequency
domain.

Definition
For a stationary sequence {X:}tez with Y72, |v(h)] < oo,

(o)

) ::% v(he ™ for A€ [—m, 7]

h=—o00
is the spectral density of {X; }tez, where i = /—1.
Observe that
0% = 27f(0)
and hence we can estimate the LRV by estimating f(0).
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Discrete Fourier transform and the periodogram

Definition

The discrete Fourier transform (DFT) and the periodogram of
X1,...,Xn with n > 1 are defined as

Xn (w]) =

i < :

XeeT '™ and  Ip(wp) = |&n(w))?,
Vo 2 n(e) = 140 )
respectively, where w; = 27j/n with j € {—[(n —1)/2],...,[n/2]}
are the Fourier frequencies and | = v/—1.

The periodogram can be viewed as the sample spectral density since
n—1

1 o
)= 5= > Ahe ™,

h=—(n—1)

where 4(h) := n=" 2" X, pXe for h > 0 and 4(h) = 4(—h) for h < 0
5/24



Smoothed periodogram estimator

- The periodogram is not a consistent estimator of the spectral
density function.

- A simple consistent estimator of the spectral density function is
obtained by smoothing of the periodogram in the following way

) = 55— 3 In(9(n,3) + ),

ljl<m

where m = m, — oo but m = o(n) as n — oo and g(n, A) is the
multiple of 2w /n closest to A € [—m, 7).
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Smoothed periodogram estimator of LRV

- We consider the smoothed periodogram estimator of the LRV
given by

,I m
D 2
where m = my, — oo but m = o(n) as n — oo.

- We extend the asymptotic normality of Q, to general nonlinear
moving averages, a result previously available only for linear
processes.

- Because Q, relies on a narrow band of local Fourier
frequencies, it is particularly relevant for local Whittle
estimation of the Hurst exponent. We illustrate this with an
application to change point analysis.
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Weakly dependent nonlinear
processes



Linear process

Definition
{Xt}tez Is a linear process if

(e}
X =Y ag.; foreach tez,
j=0

where

* {gj}jz0 C Ris such that 3°%; a? < oo;
- {et}ez is a sequence of independent and identically distributed
random variables with Eeg = 0 and E&} < <.

The asymptotic normality of Q, under the assumption of linearity
follows from the central limit theorem for weighted sums of

periodogram ordinates established by Giraitis and Koul (2013). .



Nonlinear moving average

Many commonly considered stationary processes are nonlinear (for
example, bilinear, threshold, GARCH, stochastic volatility models)
and not covered by the currently existing asymptotic results.

Definition
{Xt}tez Is @ nonlinear moving average if

Xt = g(et,et—1,...) foreach teZ, (1)

where

- g:S* — Ris ameasurable function;

- {et}ez is a sequence of independent and identically distributed
random elements with values in a measurable space S.
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LP-m-approximable nonlinear moving average

Consider a modified version of the nonlinear moving average in (1)
defined by

Xgm) =G(&ty- -y Etmt1s Et—ms Et—m—1s - - - )5
where {e}}icz is an independent copy of {et}tez.

Definition
A nonlinear moving average is LP-m-approximable if

o0
3 e = Xlp < o0
t=1

with p > 1, where || - || = (E| - |PY/P.
Hormann and Kokoszka (2010)
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Limiting distribution of the
estimator




Assumption 1
{Xt}tez is @ nonlinear moving average and

1% = XM, =0(m™) as m— oo (2)
with some n > 3.

Assumption 1 implies that

* {Xt}tez is L*-m-approximable;
- S p hfy(h)] <ocofor0<r<p-—1.
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Theorem 1

Let {Xi}tez be a nonlinear moving average such that EXy = 0 and
E [Xo|* < oco. Suppose that Assumption 1 is satisfied and m — oo
but m = o(n*/®) as n — co. Then

vm

70) [Qn — f(0)] 2 N(0,7) as n — .

The key component of the proof is a general central limit theorem

for quadratic forms established by Liu and Wu (2010) (see Theorem 6
therein).
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Application to change point analysis




Long-range dependent and change point models

- Long-range dependent and change point models can produce
similar patterns in time plots, autocovariances, and spectra
despite being fundamentally different.

- Several approaches have been proposed to distinguish between
long-range dependence and change-point models (for example,
Baek and Pipiras (2012) and Norwood and Killick (2018)).

- We show that the approach of Baek and Pipiras (2012) is
applicable also to nonlinear moving averages satisfying the
assumptions of Theorem 1.
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Change point model

The observations X, ..., X, satisfy

where

- u is the base level mean;
- A is the magnitude of change at an unknown change point n*;

- {Rt}tez is a weakly dependent stationary sequence.
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Hurst exponent

Definition 2
Suppose {Xt}tez IS a stationary sequence of random variables. If
its spectral density satisfies

f) = A"g(N)

with some 0 < H < 1, where g is a continuous function on [—m, 7]
with g(A) > 0 in the neighbourhood of A = 0, then H is called the
Hurst exponent of {X;}iez.

- IfH=1/2, {Xt}tez is called short-range or weakly dependent.
- If H>1/2, {Xt}tez Is called long-range dependent.
- Observe that if H > 1/2, then f(A) — c0 as A — 0.
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Change point versus long-range dependence

The objective is to test
Ho : model (3) holds with {R;}tcz satisfying Definition 2 with H = 1/2
Versus

Hq @ {Xt}tez satisfies Definition 2 with H > 1/2.
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Local Whittle estimator of the Hurst exponent

Definition

The local Whittle estimator (LWE) of the Hurst exponent H is
defined as

A = arg min L(H)
He©

where © = [Aq, Ay] with 0 < Ay < Ay <1,

Iog{ ZwZH 1I } (2H —1)— Zlogw

and m is the number of low frequencies used in the estimation.

A4 and A, can be taken arbitrarily near 0 and 1, or set to reflect
prior beliefs (e.g, A =1/2).

Robinson (1995)
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Change point

A potential change point can severely bias the LWE so its effect is
removed by considering the residuals

5 Xe— ATV X;, 1<t<A,
t = N N
Xe— (=AY La X, A+1<t

where 7 is the standard CUSUM estimator

= { }ZX— ZX‘—max

1<s<n
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Test statistic

The test statistic is
TR _ zm(g(fe) _ 1)
2 )

where A® is the LWE based on the residuals {R¢}1<t<n.
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Distribution under H,

Theorem 3

Suppose that model (3) holds with {R;}1<t<n satisfying ERy = 0
and E |Rg|* < oo and Assumption 1. In addition, assume that
(@) n* = |nf] with some 6 € (0,1);

(b) the change in mean level A = A(n) and the change point
estimator n satisfy

nA? — oo, A’ —n*|=0,(1) as n— oo;

1 N m>(logm)?  m(log m)?
m n“ nA?

—0 as n— oo.

Then T® N( 1) as n — oo.
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Idea of the proof of Theorem 3

The proof of Theorem 3 can be reduced to known arguments,
Theorem 1 and the following convergence that we establish for
nonlinear moving averages and under certain additional
assumptions

In

(w))
f(0)

1 D
— > y —1) = N(0,1) as n— oo,
=S (5 )

where
,I m
Vim = logl— - ;1 log

are the specific weigths that follow from the LWE.
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Rejection rule

Provided that certain assumptions hold,
™ 2 A(0,7) as n— oo
under the null hypothesis and hence we reject the null hypothesis if
™S 7.,

where z;_, is the (1 — a)th quantile of the standard normal
distribution.
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GARCH

Definition

{Rt}tez 1s said to be a GARCH(1,1) process If it satisfies the
equations

2 2 2
Rt = oter, o0t = oo+ aqRi_1 + Bioi_q,
where

cap>0,01,81 20,00+ 61 <7,

- {et}tez are independent and identically distributed random
variables such that Eep = 0, Ee§ = 1,and E&§ < oo.

- a1+ 1 < 1= the GARCH(1,1) process has a stationary solution.
- ER} = E|f1+aed|> <1
- E|B1 4+ ared|> <1 = Assumption 1.
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Empirical size

Nominal size 1% 5% 10%

n 1000 5000 10000 1000 5000 10000 1000 5000 10000
A =0.3060=0.25

m = n0-60 090 1.12 1.68 400 5.00 6.48 786 996 1156

m = n%70 092 1.18 1.46 398 5.00 5.58 786  9.68 9.90
A =0.30,60 =0.50

m = n%-0 0.64 0.68 0.78 314 336 420 626 658 828

m = n%70 0.80 0.70 0.98 338 396  4.06 6.68 7.36 7.66
A =0.30,60=0.75

m = n9-60 076 1.08 1.72 3.66 5.02 5.96 726 10.00 11.08

m = n%70 080 1.12 1.62 3.88 490 5.66 780 938 1018
A =0.60,0=0.25

m = n9-60 168 1.76 158 6.24  6.04 6.00 1112 1110 11.32

m = n%70 152 144 1.64 570  6.06 6.04 10.78 11.04 10.24
A=0.60,0=0.5

m = n060 078 0.74 0.72 3.82 374 432 7.68  7.24 8.62

m = n%70 0.86 0.84 1.00 398 4.18 4.20 760 7.82 8.12
A =0.60,0=0.75

m = n0-60 158  1.82 1.66 6.16 6.32 6.26 10.84 11.14 11.46

m = n%70 132 1.58 1.94 586 6.12 5.98 10.86 10.48 10.66



Summary




- We consider the smoothed periodogram estimator of the
long-run variance.

- The limiting distribution of the estimator is derived for
nonlinear moving averages, a result previously available only for
linear processes.

- We demonstrate how our result can be used in local Whittle
estimation of the Hurst exponent and in distinguishing
long-range dependence from change point models.

- For more details, see Characiejus, Kokoszka, and Meng (2025).

https://imada.sdu.dk/u/characiejus/


https://imada.sdu.dk/u/characiejus/
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