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Linear process

Suppose that

I H is a separable Hilbert space;

I {aj} = {aj : j ≥ 0} ⊂ L(H) are bounded linear operators;

I {εk} = {εk : k ∈ Z} are iid H-valued random elements.

Definition

A linear process is a sequence of H-valued random elements
{Xk} = {Xk : k ∈ Z} given by

Xk =
∞∑
j=0

aj(εk−j)

for each k ∈ Z.
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Partial sums and random polygonal functions

Definition

{Sn} = {Sn : n ≥ 1} are the partial sums given by

Sn =
n∑

k=1

Xk

for each n ≥ 1.

Definition

{ζn} = {ζn : n ≥ 1} are the random polygonal functions given by

ζn(t) = Sbntc + (nt − bntc)Xbntc+1

for each n ≥ 1 and t ∈ [0, 1], where b·c is the floor function.
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Asymptotic Behaviour

The convergence in some sense of the normalised partial sums and
the normalised random polygonal functions as n→∞ is
investigated.

The interesting question is whether the asymptotic behaviour of
the linear process {Xk} differs from the asymptotic behaviour of iid
random elements.
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Absolute summability of {aj}

The asymptotic behaviour of a linear process depends on the
convergence of the series

∞∑
j=0

‖aj‖op,

where ‖ · ‖op is the operator norm.

If
∑∞

j=0 ‖aj‖op <∞, then the asymptotic behaviour of the linear
process {Xk} is essentially the same as that of iid random
elements.
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CLT when
∑∞

j=0 ‖aj‖op <∞

Theorem

Suppose that {Xk} is an H-valued linear process such that∑∞
j=0 ‖aj‖op <∞, E ε0 = 0 and E ‖ε0‖2 <∞. Then

Sn√
n

D−→ N (0,ACε0A∗) as n→∞

in the space H, where

I N is an H-valued Gaussian random element;

I Cε0 is the covariance operator of ε0;

I A =
∑∞

j=0 aj and A∗ is the adjoint operator of A.

Merlevède, Peligrad and Utev (1997); Račkauskas and Suquet (2010)
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FCLT when
∑∞

j=0 ‖aj‖op <∞

Theorem

Suppose that {Xk} is an H-valued linear process such that∑∞
j=0 ‖aj‖op <∞, E ε0 = 0 and E ‖ε0‖2 <∞. Then

ζn√
n

D−→WACε0A
∗ as n→∞

in the space C ([0, 1];H), where

I WACε0A
∗ is the Wiener process with values in H;

I Cε0 is the covariance operator of ε0;

I A =
∑∞

j=0 aj and A∗ is the adjoint operator of A.

Račkauskas and Suquet (2010)
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Memory of a linear process

A linear process {Xk} has short memory if

∞∑
j=0

‖aj‖op <∞

in the sense that the asymptotic behaviour of {Xk} is the
essentially the same as that of iid random elements.
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Main problem

We investigate the asymptotic behaviour of the linear process {Xk}
with values in a infinite-dimensional separable Hilbert space H
when the operator norms of {aj} are not summable, i.e.

∞∑
j=0

‖aj‖op =∞.

The central limit theorem and the functional central limit theorem
is investigated for a particular functional linear process.
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Hilbert space L2

L2 = L2[0, 1] is the Hilbert space of square integrable functions
f : [0, 1]→ R with the inner product given by

〈f , g〉 =

∫ 1

0
f (r)g(r)dr ,

where f , g ∈ L2.
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Linear process with values in L2

Suppose that {Xk} is a linear process with values in L2 and

aj = (j + 1)−D

for each j ≥ 0.

The operators {(j + 1)−D : j ≥ 0} are multiplication operators
such that

(j + 1)−D f = {(j + 1)−d(t)f (t) : t ∈ [0, 1]}

for each f ∈ L2, where d : [0, 1]→ (1/2,∞) is a measurable
function.
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Convergence of the series

Proposition

The series

Xk =
∞∑
j=0

(j + 1)−Dεk−j

converges almost surely if

I d(t) > 1/2 for each t ∈ [0, 1];

I the integral ∫ 1

0

σ2(s)

2d(s)− 1
ds

is finite, where σ2(t) = E ε2
0(t) for t ∈ [0, 1];

I E ε0 = 0 and E ‖ε0‖2 <∞.
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Series
∑∞

j=0 ‖(j + 1)−D‖op

Proposition

If 1/2 < d(t) < 1 for each t ∈ [0, 1], then

∞∑
j=0

‖(j + 1)−D‖op =∞.
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Simulated sample paths

Let us asssume the following

I {εk(t) : t ∈ [0, 1]}k∈Z are iid standard Wiener processes on
the interval [0, 1];

I d : [0, 1]→ R is a step function defined by

d(t) = d11[0,1/2)(t) + d21[1/2,1](t),

where d1, d2 ∈ (1/2,+∞) and 1A is the indicator function of
a set A.
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Simulated sample paths
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Norming sequence {n−H}

{n−H} = {n−H : n ≥ 1} are multiplication operators such that

n−H f = {n−[3/2−d(t)]f (t) : t ∈ [0, 1]}

for each n ≥ 1 and for each f ∈ L2.
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CLT for a linear process with values in L2

Theorem

If 1/2 < d(t) < 1, E ε0(t) = 0, σ2(t) = E ε2
0(t) <∞ for each

t ∈ [0, 1] and both of the integrals∫ 1

0

σ2(r)

[1− d(r)]2
dr and

∫ 1

0

σ2(r)

[1− d(r)][2d(r)− 1]
dr

are finite, then

n−HSn
D−→ G

in the space L2, where G = {G (t) : t ∈ [0, 1]} is a zero mean
Gaussian random element with values in L2.

Ch. and Račkauskas (2013)
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FCLT for a linear process with values in L2

Theorem

If 1/2 < d(t) < 1, E ε0(t) = 0, σ2(t) = E ε2
0(t) <∞ for each

t ∈ [0, 1], both of the integrals

E

[∫ 1

0

ε2(r)

[1− d(r)]2
dr

]p/2

and

∫ 1

0

σ2(r)

[1− d(r)][2d(r)− 1]
dr

are finite and either p = 2 and ess sup d < 1 or p > 2, then

n−Hζn
D−→ G

in the space C ([0, 1]; L2), where G = {G(s, t) : (s, t) ∈ [0, 1]2} is a
zero mean Gaussian random process with values in C ([0, 1]; L2).

Ch. and Račkauskas (2014)
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