Asymptotic Behaviour of Functional Linear Processes with Long Memory

Vaidotas Characiejus¹ Alfredas Račkauskas²

¹Fakultät für Mathematik, Ruhr-Universität Bochum, Germany <vaidotas.characiejus@gmail.com>

²Faculty of Mathematics and Informatics, Vilnius University, Lithuania <alfredas.rackauskas@mif.vu.lt>

> 12th German Probability and Statistics Days Bochum, March 2, 2016

Outline

Introduction and background Definitions Asymptotic behaviour Main problem

Linear process with values in L₂ Construction Properties Simulated sample paths

Results

Norming sequence The CLT and the FCLT

Definitions Asymptotic behaviour Main problem

Linear process

Suppose that

- \mathbb{H} is a separable Hilbert space;
- $\{a_j\} = \{a_j : j \ge 0\} \subset L(\mathbb{H})$ are bounded linear operators;
- ▶ $\{\varepsilon_k\} = \{\varepsilon_k : k \in \mathbb{Z}\}$ are iid \mathbb{H} -valued random elements.

Definition

A *linear process* is a sequence of \mathbb{H} -valued random elements $\{X_k\} = \{X_k : k \in \mathbb{Z}\}$ given by

$$X_k = \sum_{j=0}^\infty a_j(arepsilon_{k-j})$$

for each $k \in \mathbb{Z}$.

Definitions Asymptotic behaviour Main problem

Partial sums and random polygonal functions

Definition

 $\{S_n\} = \{S_n : n \ge 1\}$ are the *partial sums* given by

$$S_n = \sum_{k=1}^n X_k$$

for each $n \ge 1$.

Definition

 $\{\zeta_n\} = \{\zeta_n : n \ge 1\}$ are the random polygonal functions given by $\zeta_n(t) = S_{\lfloor nt \rfloor} + (nt - \lfloor nt \rfloor)X_{\lfloor nt \rfloor + 1}$ for each $n \ge 1$ and $t \in [0, 1]$, where $|\cdot|$ is the floor function.

Definitions Asymptotic behaviour Main problem

Asymptotic Behaviour

The convergence in some sense of the normalised partial sums and the normalised random polygonal functions as $n \to \infty$ is investigated.

The interesting question is whether the asymptotic behaviour of the linear process $\{X_k\}$ differs from the asymptotic behaviour of iid random elements.

Definitions Asymptotic behaviour Main problem

Absolute summability of $\{a_j\}$

The asymptotic behaviour of a linear process depends on the convergence of the series

$$\sum_{j=0}^{\infty} \|a_j\|_{op},$$

where $\|\cdot\|_{op}$ is the operator norm.

If $\sum_{j=0}^{\infty} \|a_j\|_{op} < \infty$, then the asymptotic behaviour of the linear process $\{X_k\}$ is essentially the same as that of iid random elements.

Definitions Asymptotic behaviour Main problem

CLT when
$$\sum_{j=0}^{\infty} \| \textbf{\textit{a}}_j \|_{op} < \infty$$

Theorem

Suppose that $\{X_k\}$ is an \mathbb{H} -valued linear process such that $\sum_{j=0}^{\infty} \|a_j\|_{op} < \infty$, $\mathsf{E} \, \varepsilon_0 = 0$ and $\mathsf{E} \, \|\varepsilon_0\|^2 < \infty$. Then

$$rac{S_n}{\sqrt{n}} \stackrel{\mathcal{D}}{ o} \mathcal{N}(0, AC_{arepsilon_0}A^*) \quad \textit{as} \quad n o \infty$$

in the space \mathbb{H} , where

- ▶ N is an \mathbb{H} -valued Gaussian random element;
- C_{ε_0} is the covariance operator of ε_0 ;
- $A = \sum_{j=0}^{\infty} a_j$ and A^* is the adjoint operator of A.

Merlevède, Peligrad and Utev (1997); Račkauskas and Suquet (2010)

Definitions Asymptotic behaviour Main problem

FCLT when
$$\sum_{j=0}^{\infty} \| \pmb{a}_j \|_{op} < \infty$$

Theorem

Suppose that $\{X_k\}$ is an \mathbb{H} -valued linear process such that $\sum_{j=0}^{\infty} \|a_j\|_{op} < \infty$, $\mathsf{E} \, \varepsilon_0 = 0$ and $\mathsf{E} \, \|\varepsilon_0\|^2 < \infty$. Then

$$rac{\zeta_n}{\sqrt{n}} \xrightarrow{\mathcal{D}} W_{\mathcal{AC}_{\varepsilon_0}\mathcal{A}^*}$$
 as $n o \infty$

in the space $C([0,1]; \mathbb{H})$, where

- ► $W_{AC_{\varepsilon_0}A^*}$ is the Wiener process with values in \mathbb{H} ;
- C_{ε_0} is the covariance operator of ε_0 ;
- $A = \sum_{j=0}^{\infty} a_j$ and A^* is the adjoint operator of A.

Račkauskas and Suquet (2010)

Definitions Asymptotic behaviour Main problem

Memory of a linear process

A linear process $\{X_k\}$ has short memory if

$$\sum_{j=0}^\infty \|a_j\|_{op} < \infty$$

in the sense that the asymptotic behaviour of $\{X_k\}$ is the essentially the same as that of iid random elements.

Definitions Asymptotic behaviour Main problem

Main problem

We investigate the asymptotic behaviour of the linear process $\{X_k\}$ with values in a infinite-dimensional separable Hilbert space \mathbb{H} when the operator norms of $\{a_j\}$ are not summable, i.e.

$$\sum_{j=0}^{\infty} \|a_j\|_{op} = \infty.$$

The central limit theorem and the functional central limit theorem is investigated for a particular functional linear process.

Construction Properties Simulated sample paths

Hilbert space L_2

 $L_2 = L_2[0, 1]$ is the Hilbert space of square integrable functions $f : [0, 1] \rightarrow \mathbb{R}$ with the inner product given by

$$\langle f,g\rangle = \int_0^1 f(r)g(r)\mathrm{d}r,$$

where $f, g \in L_2$.

Linear process with values in L_2

Suppose that $\{X_k\}$ is a linear process with values in L_2 and

$$a_j = (j+1)^{-D}$$

for each $j \ge 0$.

The operators $\{(j+1)^{-D} : j \ge 0\}$ are multiplication operators such that

$$(j+1)^{-D}f = \{(j+1)^{-d(t)}f(t) : t \in [0,1]\}$$

for each $f \in L_2$, where $d : [0,1] \to (1/2,\infty)$ is a measurable function.

Convergence of the series

Proposition

The series

$$X_k = \sum_{j=0}^{\infty} (j+1)^{-D} \varepsilon_{k-j}$$

converges almost surely if

- ▶ d(t) > 1/2 for each $t \in [0, 1]$;
- ► the integral

$$\int_0^1 \frac{\sigma^2(s)}{2d(s)-1} \mathrm{d}s$$

is finite, where $\sigma^2(t) = \mathsf{E} \varepsilon_0^2(t)$ for $t \in [0, 1]$; • $\mathsf{E} \varepsilon_0 = 0$ and $\mathsf{E} ||\varepsilon_0||^2 < \infty$.

Construction Properties Simulated sample paths

Series
$$\sum_{j=0}^{\infty} \|(j+1)^{-D}\|_{op}$$

Proposition

If 1/2 < d(t) < 1 for each $t \in [0, 1]$, then

$$\sum_{j=0}^{\infty}\|(j+1)^{-D}\|_{op}=\infty.$$

Simulated sample paths

Let us asssume the following

- $\{\varepsilon_k(t) : t \in [0,1]\}_{k \in \mathbb{Z}}$ are iid standard Wiener processes on the interval [0,1];
- ▶ $d: [0,1] \rightarrow \mathbb{R}$ is a step function defined by

$$d(t) = d_1 \mathbf{1}_{[0,1/2)}(t) + d_2 \mathbf{1}_{[1/2,1]}(t),$$

where $d_1, d_2 \in (1/2, +\infty)$ and $\mathbf{1}_A$ is the indicator function of a set A.

Construction Properties Simulated sample paths

Simulated sample paths

d₁=0.6, d₂=2

d₁=0.6, d₂=0.7

Norming sequence The CLT and the FCLT

Norming sequence $\{n^{-H}\}$

$$\{n^{-H}\} = \{n^{-H} : n \ge 1\}$$
 are multiplication operators such that
$$n^{-H}f = \{n^{-[3/2-d(t)]}f(t) : t \in [0,1]\}$$

for each $n \ge 1$ and for each $f \in L_2$.

Norming sequence The CLT and the FCLT

CLT for a linear process with values in L_2

Theorem

If 1/2 < d(t) < 1, $E \varepsilon_0(t) = 0$, $\sigma^2(t) = E \varepsilon_0^2(t) < \infty$ for each $t \in [0, 1]$ and both of the integrals

$$\int_0^1 \frac{\sigma^2(r)}{[1-d(r)]^2} \mathrm{d}r \quad \text{and} \quad \int_0^1 \frac{\sigma^2(r)}{[1-d(r)][2d(r)-1]} \mathrm{d}r$$

are finite, then

$$n^{-H}S_n \xrightarrow{\mathcal{D}} G$$

in the space L_2 , where $G = \{G(t) : t \in [0, 1]\}$ is a zero mean Gaussian random element with values in L_2 .

Ch. and Račkauskas (2013)

Norming sequence The CLT and the FCLT

FCLT for a linear process with values in L_2

Theorem

If
$$1/2 < d(t) < 1$$
, $E \varepsilon_0(t) = 0$, $\sigma^2(t) = E \varepsilon_0^2(t) < \infty$ for each $t \in [0, 1]$, both of the integrals

$$\mathsf{E}\left[\int_{0}^{1} \frac{\varepsilon^{2}(r)}{[1-d(r)]^{2}} \mathrm{d}r\right]^{p/2} \text{ and } \int_{0}^{1} \frac{\sigma^{2}(r)}{[1-d(r)][2d(r)-1]} \mathrm{d}r$$

are finite and either p = 2 and ess sup d < 1 or p > 2, then

$$n^{-H}\zeta_n \xrightarrow{\mathcal{D}} \mathcal{G}$$

in the space $C([0,1]; L_2)$, where $\mathcal{G} = \{\mathcal{G}(s,t) : (s,t) \in [0,1]^2\}$ is a zero mean Gaussian random process with values in $C([0,1]; L_2)$.

Ch. and Račkauskas (2014)

Thank you!