A general white noise test based on kernel lag-window estimates of the spectral density operator

Vaidotas Characiejus^a

Joint work with Gregory Rice^b

^aDépartement de Mathématique, Université libre de Bruxelles, Belgium vaidotas.characiejus@ulb.ac.be

^bDepartment of Statistics and Actuarial Science, University of Waterloo, Canada

ISNPS2018 Salerno, June 15, 2018

Outline

Problem

Method and test statistic

Simulation study

Summary

Definitions and hypothesis Previous results Our test

$\mathbb H\text{-valued}$ time series

 $\{X_t\}_{t\in\mathbb{Z}}$ is a stationary sequence of random elements with values in a real separable Hilbert space \mathbb{H} such that $\mathsf{E} X_0 = 0$.

Definition

The autocovariance operators $\{C(j)\}_{j\in\mathbb{Z}}$ of $\{X_t\}_{t\in\mathbb{Z}}$ are defined by

$$\mathcal{C}(j) = \mathsf{E}[X_j \otimes X_0] = \mathsf{E}[\langle \cdot, X_0 \rangle X_j]$$

for $j \in \mathbb{Z}$.

Definitions and hypothesis Previous results Our test

White noise and hypothesis

Definition

 $\{X_t\}_{t\in\mathbb{Z}}$ is white noise if X_t 's are uncorrelated, i.e. if $\mathcal{C}(j) = 0$ for each $j \neq 0$.

We are interested in testing the hypothesis that $\{X_t\}_{t\in\mathbb{Z}}$ is white noise.

Definitions and hypothesis Previous results Our test

Available tests

Time-domain tests for independence

- Gabrys and Kokoszka [2007], Gabrys, Horváth, and Kokoszka [2010];
- ► Horváth, Hušková, and Rice [2013].

Frequency-domain tests for white noise

- ► Zhang [2016];
- ▶ Bagchi, Ch., and Dette [2018].

Definitions and hypothesis Previous results Our test

Test that we propose

The idea is to measure the distance between the stationary sequence $\{X_t\}_{t\in\mathbb{Z}}$ and white noise.

Such a test was proposed by Hong (1996) in the univariate setting.

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n Transformation of T_n

Spectral density function

Definition

The spectral density function is a discrete-time Fourier transform of $\{\mathcal{C}(j)\}_{j\in\mathbb{Z}}$ defined by

$$\mathcal{F}(\omega) = (2\pi)^{-1} \sum_{j \in \mathbb{Z}} \mathcal{C}(j) e^{-ij\omega}$$

for $\omega \in [-\pi, \pi]$ provided that $\sum_{j \in \mathbb{Z}} \|\mathcal{C}(j)\|_2 < \infty$, where $i = \sqrt{-1}$ and $\|\| \cdot \|_2$ is the Hilbert-Schmidt norm.

If $\{X_t\}_{t\in\mathbb{Z}}$ is white noise, then $\mathcal{F}(\omega) = (2\pi)^{-1}\mathcal{C}(0)$ for $\omega \in [-\pi,\pi]$.

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n Transformation of T_n

Distance function

The distance between \mathcal{F} and $(2\pi)^{-1}\mathcal{C}(0)$ is measured by

$$Q^2 = 2\pi \int_{-\pi}^{\pi} \||\mathcal{F}(\omega) - (2\pi)^{-1} \mathcal{C}(0)\||_2^2 d\omega,$$

where $\|\!|\!| \cdot \|\!|_2$ is the Hilbert-Schmidt norm.

We have that $Q^2 = \sum_{h \neq 0} \| \mathcal{C}(h) \|_2^2$.

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n

Transformation of T_n

Hypothesis

The hypothesis that we want to test is as follows

$$H_0$$
 : $Q = 0$ versus H_1 : $Q > 0$.

To perform the test, we need an estimator of Q.

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n Transformation of T_n

Sample autocovariance operators

Definition

The sample autocovariance operators are defined by

$$\hat{\mathcal{C}}_n(j) = n^{-1} \sum_{t=j+1}^n X_t \otimes X_{t-j}$$

for $0 \leq j < n$ and by $\hat{\mathcal{C}}_n(j) = \hat{\mathcal{C}}_n^*(-j)$ for -n < j < 0.

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n Transformation of T_n

Estimator of spectral density function

Definition

The kernel lag-window estimator of the spectral density function is defined by

$$\hat{\mathcal{F}}_n(\omega) = (2\pi)^{-1} \sum_{|j| < n} k(j/p_n) \hat{\mathcal{C}}_n(j) e^{-ij\omega}$$

for $\omega \in [-\pi, \pi]$, where $k : \mathbb{R} \to [-1, 1]$ is a kernel and $\{p_n\}_{n \ge 1}$ is a bandwidth.

Problem
Distance to white noise

Method and test statistic
Test statistic T_n

Simulation study
Asymptotic behaviour of T_n

Summary
Transformation of T_n

Estimator of the distance to white noise

The estimator of Q is defined by

$$\hat{Q}_n^2 = 2\pi \int_{-\pi}^{\pi} \|\hat{\mathcal{F}}_n(\omega) - (2\pi)^{-1} \hat{\mathcal{C}}_n(0)\|_2^2 d\omega.$$

Alternatively, the estimator \hat{Q}_n can be expressed as

$$\hat{Q}_n^2 = 2 \sum_{j=1}^{n-1} k^2 (j/p_n) ||| \hat{C}_n(j) |||_2^2.$$

Problem Distance to white noise Method and test statistic Simulation study Summary Transformation of T_n

Test statistic

We propose to use the test statistic T_n defined by

$$T_n = T_n(k, p_n) = \frac{2^{-1}n\hat{Q}_n^2 - \hat{\sigma}_n^4 C_n(k)}{\||\hat{C}_n(0)\||_2^2 \sqrt{2D_n(k)}}$$

for $n \geq 1$, where $\hat{\sigma}^2 = n^{-1} \sum_{t=1}^n \|X_t\|^2$,

$$C_n(k) = \sum_{j=1}^{n-1} (1 - j/n) k^2 (j/p_n),$$

$$D_n(k) = \sum_{j=1}^{n-2} (1 - j/n) (1 - (j+1)/n) k^4 (j/p_n).$$

 $\begin{array}{c|c} \mbox{Problem} & \mbox{Distance to white noise} \\ \mbox{Method and test statistic} & \mbox{Test statistic} & \mbox{Test statistic} & \mbox{Test statistic} & \mbox{Asymptotic behaviour of } T_n \\ \mbox{Summary} & \mbox{Transformation of } T_n \end{array}$

Asymptotic distribution of the statistic

Theorem

Suppose that

- (i) $\{X_t\}_{t\in\mathbb{Z}}$ are iid \mathbb{H} -valued random elements such that $\mathsf{E} X_0 = 0$ and $\mathsf{E} ||X_0||^4 < \infty$;
- (ii) k is an even function that is continuous at zero and at all but finite number of points, with k(0) = 1 and $k(x) = O(x^{-\alpha})$ for some $\alpha > 1/2$ as $x \to \infty$;

(iii)
$$p_n \to \infty$$
 and $p_n/n \to 0$ as $n \to \infty$.
Then

$$T_n \xrightarrow{d} N(0,1)$$

as $n \to \infty$.

Problem
Distance to white noise

Method and test statistic
Test statistic T_n

Simulation study
Asymptotic behaviour of T_n

Special cases

Hong (1996)

We have that

$$T_n = \frac{\hat{\sigma}_n^4}{\||\hat{\mathcal{C}}_n(0)\||_2^2} \cdot \frac{2^{-1}n\hat{\sigma}_n^{-4}\hat{Q}_n^2 - C_n(k)}{\sqrt{2D_n(k)}}$$

for $n \geq 1$. If $\mathbb{H} = \mathbb{R}$, then

$$\frac{\hat{\sigma}_n^4}{\|\hat{\mathcal{C}}_n(0)\|\|_2^2} \xrightarrow{p} 1$$

and we recover the test statistic proposed by Hong (1996).

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n Transformation of T_n

Special cases (cont.)

Horváth, Hušková, and Rice (2013) If $\mathbb{H} = L^2([0,1],\mathbb{R})$ and $k = \mathbf{1}_{\{|x| \le 1\}}$, then T_n is asymptotically equivalent to $n \sum_{i=1}^{p_n} \|\hat{\mathcal{C}}_n(j)\|\|_2^2 - \hat{\sigma}_n^4 p_n$

$$T_n^* = \frac{n \sum_{j=1}^{n} \|C_n(j)\|_2^2 - \sigma_n^* \rho_n}{\|\hat{C}_n(0)\|_2^2 \sqrt{2\rho_n}}$$

which is the test statistic considered in Horváth, Hušková, and Rice (2013).

Distance to white noise Test statistic T_n Asymptotic behaviour of T_n Transformation of T_n

Consistency of the test

Theorem

Suppose that

 (i) {X_t}_{t∈Z} is a fourth order stationary sequence of zero mean *ℍ*-valued random elements such that ∑_{j=-∞}[∞] |||C(j)|||₁² < ∞ and sup_{j∈Z} ∑_{h=-∞}[∞] |||K_{h+j,h,j}|||₁ < ∞, where ||| · |||₁ is the nuclear norm and {K_{j1,j2,j3}}_{j1,j2,j3∈Z} are the fourth order cumulant operators;

(ii)
$$p_n \to \infty$$
 and $p_n/n \to 0$ as $n \to \infty$.
Then

$$(p_n^{1/2}/n)T_n \xrightarrow{P} rac{2^{-1}Q^2}{\||\mathcal{C}(0)\||_2^2(2D(k))^{1/2}}$$

as $n \to \infty$.

Problem
Distance to white noise

Method and test statistic
Test statistic T_n

Simulation study
Asymptotic behaviour of T_n

Summary
Transformation of T_n

Square root transformation

The transformed test statistic is given by

$$\begin{aligned} \mathcal{T}_n^{SQ} &= \mathcal{T}_n^{SQ}(k, p_n) \\ &= \Big[\frac{2\hat{\sigma}_n^4 C_n(k)}{D_n(k) \| |\hat{C}_n(0) \|_2^4} \Big]^{1/2} [(2^{-1}n\hat{Q}_n^2)^{1/2} - (\hat{\sigma}_n^4 C_n(k))^{1/2}]. \end{aligned}$$

Under the same assumptions, we have that

$$T_n^{SQ} \xrightarrow{d} N(0,1)$$

as $n \to \infty$.

Simulation setup

We investigate the case when $\mathbb{H} = L^2([0,1],\mathbb{R})$.

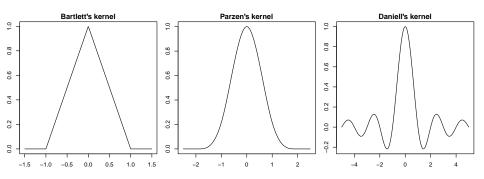
The following data generating processes are considered (i) IID-BM;

- (ii) fGARCH(1,1) (Aue, Horváth, and Pellatt (2016));
- (iii) FAR(1, S)-BM with the kernel of the operator given by $\varphi_c(t,s) = c \exp\{(t^2 + s^2)/2\}$ for $t, s \in [0,1]$ and the constant c is chosen so that $\|\varphi_c\| = S \in (0,1)$.

Each random function was generated on 100 equally spaced points. The burn-in sample for fGARCH(1,1) and FAR(1, S)-BM was 100. The number of the Monte Carlo replication was 1000.

Setup Results

Kernels



Setup Results

Bandwidth selection

Similarly as in Bühlmann (1996), we consider bandwidths of the form

$$p_n = n^{1/(2q+1)}$$

and

$$p_n = \hat{M}n^{1/(2q+1)},$$

where q is the order of the kernel and \hat{M} is a constant estimated from the data.

Setup **Results**

Monte Carlo simulation

DGP:	IID-BM					fGARCH(1,1)					FAR(1,0.3)-BM			
	<i>n</i> =	100	<i>n</i> =	250	_	<i>n</i> =	100	<i>n</i> = 250			<i>n</i> = 100		n = 250	
Stat/Nominal Size	5%	1%	5%	1%		5%	1%	5%	1%		5%	1%	5%	1%
$T_n(k_B, n^{1/3})$	60	30	73	39		145	85	126	78		826	733	996	986
$T_n(k_B, \hat{M}n^{1/3})$	61	38	74	33		136	87	119	76		751	633	990	981
$T_n(k_P, n^{1/5})$	59	32	71	26		139	87	132	81		841	773	998	992
$T_n(k_P, \hat{M}n^{1/5})$	64	28	74	39		138	90	130	77		789	681	996	986
$T_n(k_D, n^{1/5})$	61	35	65	28		139	87	131	76		843	770	999	996
$T_n(k_D, \hat{M}n^{1/5})$	63	33	72	33		140	85	117	77		836	763	998	995
$T_n^{SQ}(k_B, n^{1/3})$	37	13	54	15		110	51	102	48		771	618	993	980
$T_n^{SQ}(k_B, \hat{M}n^{1/3})$	44	16	41	13		90	42	79	33		793	631	998	987
$T_n^{SQ}(k_P, n^{1/5})$	43	15	45	13		99	46	93	48		789	640	996	981
$T_n^{SQ}(k_P, \hat{M}n^{1/5})$	38	13	54	20		100	50	90	44		739	592	990	977
$T_n^{SQ}(k_D, n^{1/5})$	43	19	41	14		101	45	94	48		802	666	996	982
$T_n^{SQ}(k_D, \hat{M}n^{1/5})$	42	16	41	16		99	44	87	43		798	657	997	987
$Z_n(10)$	48	9	49	11		50	12	41	5		708	386	992	913
BCD _n	28	13	38	12		46	22	59	21		197	109	433	301

Summary

Summary

- ► A general test for white noise for *H*-valued time series.
- The asymptotic distribution under independence and the consistency of the test.
- Better power against functional autoregressive alternatives compared to the existing tests.
- Not well sized for general weak white noise in function space such as for functional GARCH processes.

Preprint: https://arxiv.org/abs/1803.09501