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aDépartement de mathématique, Université libre de Bruxelles, Belgium
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Functional time series

{Xt}t∈Z are stationary L2[0, 1]-valued random elements.

Definition

The autocovariance kernels {rh}h∈Z of {Xt}t∈Z are defined by

rh(τ, σ) = Cov[Xh(τ),X0(σ)]

for each τ, σ ∈ [0, 1] and h ∈ Z.
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White noise and hypothesis

Definition

{Xt}t∈Z is white noise if Xt ’s are uncorrelated, i.e. if rh = 0 for
each h 6= 0.

We are interested in testing the hypothesis that {Xt}t∈Z is white
noise.
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Available tests

Time-domain tests for independence

I Gabrys and Kokoszka [2007], Gabrys, Horváth, and
Kokoszka [2010];

I Horváth, Hušková, and Rice [2013].

Frequency-domain test for white noise

I Zhang [2016].

Some parameters need to be selected and/or bootstrap is needed to
perform these tests.
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Our test

We propose a frequency-domain based test.

The idea is to estimate the minimum distance between {Xt}t∈Z and
white noise.
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Spectral density kernel

Definition

The spectral density kernel is a discrete-time Fourier transform of
{rh}h∈Z defined by

fω =
1

2π

∑
h∈Z

exp(−iωh)rh

for ω ∈ [−π, π] provided that
∑

h∈Z ‖rh‖2 <∞.

If {Xt}t∈Z is white noise, then fω = (2π)−1r0.
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Distance to white noise

We measure the distance between fω, ω ∈ [−π, π], and a spectral
density kernel f ∈ L2([0, 1] × [0, 1]) corresponding to white noise
using the distance function

M2(f ) =

∫ π

−π
‖fω − f ‖2

2dω.

The minimum of distance function is given by

m2 = min
f

M2(f ) =

∫ π

−π
‖fω − f̃ ‖2

2dω,

where f̃ (τ, σ) = (2π)−1
∫ π
−π fω(τ, σ)dω for each τ, σ ∈ [0, 1].
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Hypothesis

The hypothesis that we test is as follows

H0 : m2 = 0 versus H1 : m2 > 0.

To perform this test, we need an estimator of the minimum dis-
tance m2.
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fDFT and periodogram kernel

Definition

The functional discrete Fourier transform (fDFT) is defined as

X̃ (T )
ω =

1√
2πT

T−1∑
t=0

exp(−iωt)Xt

for ω ∈ [−π, π] and T ≥ 1.

Definition

The periodogram kernel is defined as

p(T )
ω (τ, σ) = [X̃ (T )

ω (τ)][X̃
(T )
ω (σ)]

for each τ, σ ∈ [0, 1], where x̄ is the complex conjugate of x ∈ C.
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Estimator of minimum distance

To estimate the minimum distance, we avoid direct estimation of the
spectral density kernel and propose to use sums of periodograms.

The estimator is defined as

m̂T = 2π

[
2

T

bT/2c∑
k=2

〈p(T )
ωk

, p(T )
ωk−1
〉 −

∥∥∥ 1

T

bT/2c∑
k=1

[p(T )
ωk

+ p̄(T )
ωk

]
∥∥∥2

2

]
,

where ωk are the Fourier frequencies defined by ωk = 2πk/T for
1 ≤ k ≤ bT/2c and T ≥ 1.
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Asymptotic distribution of the estimator

Theorem

Suppose that

(i) {Xt}t∈Z is strictly stationary sequence of L2[0, 1]-valued
random elements such that E ‖X0‖k2 <∞ for each k ≥ 1;

(ii)
∫ 1

0

∫ 1
0

∑
t1,t2,t3∈Z |E[Xt1(τ)Xt2(σ)Xt3(τ)X0(σ)]|dτdσ <∞;

(iii)
∑

t1,...,tk−1∈Z(1 + |tj |)‖ cum(Xt1 , . . . ,Xtk−1
,X0)‖2 <∞ for

j = 1, 2, . . . , k − 1 and all k ≥ 2.

Then √
T (m̂T −m2)

d−→ N(0, v2) as T →∞,

where v2 is the asymptotic variance. Under the null hypothesis, v2

is given by v2
H0

= 8π2‖f0‖4
2.
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Rejection rule

A consistent estimator of the asymptotic standard deviation under
the null hypothesis is given by

v̂H0 =
4π

T

bT/2c∑
k=2

〈p(T )
ωk

, p(T )
ωk−1
〉

for T ≥ 1.

The null hypothesis is rejected if

m̂T >
v̂H0√
T
z1−α,

where z1−α is the (1− α)-quantile of the standard normal distribu-
tion.
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Functional time series under the null hypothesis

We simulate

I iid standard Brownian motions;

I iid Brownian bridges;

I the values of FARCH(1) process.
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Empirical rejection probabilities under the null hypothesis

Brownian motions Brownian bridges FARCH(1)

T 10% 5% 1% 10% 5% 1% 10% 5% 1%

128
9.5 4.8 1.1 10.8 5.3 0.8 11.1 5.7 0.8

(11.0) (4.2) (0.8) (11.0) (5.4) (1.1) (10.7) (5.9 ) (0.9)

256
9.6 5.1 1.3 10.3 5.4 0.9 10.9 5.5 0.7

(10.0) (4.2) (0.9) (9.5) (4.8) (0.7) (11.1) (5.2) (0.9)

512
10.1 5.1 0.8 9.7 5.1 1.0 10.9 5.3 0.8
(9.9) (4.7) (0.6) (10.3) (5.9) (1.3) (11.1) (4.9) (0.7)

The numbers in brackets give the corresponding results of the test of Zhang (2016)
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Functional time series under the alternative hypothesis

We simulate observations from the FAR(1) model

Xt − µ = ρ(Xt−1 − µ) + εt

for t ≥ 1, where ρ : L2[0, 1] → L2[0, 1] is an integral operator
defined by

ρf (·) =

∫ 1

0
K(·, σ)f (σ)dσ

for f ∈ L2[0, 1] with a kernel K ∈ L2([0, 1] × [0, 1]) and iid errors
{εt}t∈Z.
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Functional time series under the alternative hypothesis

We consider four different FAR(1) models where the errors are either
Brownian motions or Brownian bridges and the kernel of the integral
operator is either the Gaussian kernel

KG (τ, σ) = cG exp

(
τ2 + σ2

2

)
or the Wiener kernel

KW (τ, σ) = cW min(τ, σ).
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Empirical rejection probabilities under the alternative

εt Brownian motions

K Gaussian Wiener

T 10% 5% 1% 10% 5% 1%

128
82.6 80.7 65.9 87.6 82.4 66.9

(86.1) (83.7) (58.5) (89.9) (83.1) (59.7)

256
99.0 98.2 98.2 99.4 98.3 94.2

(99.6) (99.2) (99.0) (99.9) (99.5) (98.6)

512
99.8 99.6 99.6 99.9 99.9 99.6

(99.7) (99.5) (99.0) (99.9) (99.8) (99.1)

The numbers in brackets give the corresponding results of the test of Zhang (2016)
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Empirical rejection probabilities under the alternative

εt Brownian bridges

K Gaussian Wiener

T 10% 5% 1% 10% 5% 1%

128
80.1 77.4 60.1 87.6 79.9 61.2

(79.2) (68.3) (54.4) (80.2) (65.8) (58.1)

256
100.0 97.0 95.5 99.9 98.3 98.1

(100.0) (98.2) (97.2) (100.0) (99.1) (98.8)

512
100.0 99.3 99.3 100.0 100.0 98.8

(100.0 ) (98.7) (98.1) (100.0) (100.0) (99.1)

The numbers in brackets give the corresponding results of the test of Zhang (2016)
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Summary

I We propose a frequency-domain test for white noise
(non-correlation) in functional time series.

I Our test requires neither selection of some parameters nor
bootstrap to obtain critical values.

I The finite sample performance in testing for white noise is
very similar to that of Zhang (2016).
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