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Background and motivation

Currently available tests

Gabrys and Kokoszka [2007]
I A time-domain based portmanteau test of inde-

pendence for functional observations.
I Based on the Karhunen–Loéve expansion.
I The number of principal components and the

lag parameter need to be chosen.
I Extended by Gabrys et al. [2010] to test for in-

dependence of the errors of a functional linear
model.

Horváth, Hušková, and Rice [2013]
I A test of independence that is based on the

sum of the L2 norms of the empirical correla-
tion functions.

I There is no need to fix the number of princi-
pal components and the lag parameter goes to
infinity with a certain rate as the sample size
increases.

Zhang [2016]
I Test based on the L2 norm of the periodogram

function.
I Does not involve the choices of the functional

principal components nor the lag truncation
number.

I The approach is robust to dependence within
white noise.

I The limiting distribution of the test statistic is
non-pivotal and a bootstrap procedure is needed
to obtain the critical values.

Test that we propose
I A frequency-domain based test with a simple

asymptotic distribution.
I We do not need bootstrap nor do we need to

choose any regularisation parameters.
I Our test is a generalisation of the test proposed

by Dette, Kinsvater, and Vetter [2011].

Notations and definitions

{Xt}t∈Z are strictly stationary L2([0, 1],R)-valued
random elements. The mean curve is denoted by

µ(τ ) = EX0(τ )

provided that E ‖X0‖2 <∞ and the autocovariance
kernel at lag t ∈ Z is denoted by

rt(τ, σ) = E[(Xt(τ )− µ(τ ))(X0(σ)− µ(σ))]

for τ, σ ∈ [0, 1] provided that E ‖X0‖2
2 < ∞. The

spectral density kernel is defined as

fω =
1

2π

∑
t∈Z

exp(−iωt)rt

for ω ∈ [−π, π] provided that
∑

t∈Z ‖rt‖2 < ∞,
where ‖ · ‖2 is the norm of L2([0, 1]2,R).

Distance from white noise

We measure the distance between fω, ω ∈ [−π, π],
and a spectral density function f ∈ L2([0, 1]2,C)
corresponding to white noise using the distance

M2(f ) =

∫ π

−π
‖fω − f ‖2

2dω.

It is possible to minimise the distance function M
and obtain an explicit expression of the minimum.
The minimum distance is given by

m2 = min
f

M2(f ) =

∫ π

−π
‖fω − f̃ ‖2

2dω,

where

f̃ (τ, σ) =
1

2π

∫ π

−π
fω(τ, σ)dω =

1

2π
r0(τ, σ)

for each τ, σ ∈ [0, 1]. Alternatively,

m2 =

∫ π

−π
‖fω‖2

2dω − 2π‖f̃ ‖2
2

and

m2 =
1

2π

∑
t 6=0

‖rt‖2
2,

which clearly shows that the minimum distance is
equal to 0 if and only if the time series {Xt}t∈Z is
uncorrelated.

Estimator of minimum distance

To estimate the minimum distance, we avoid a di-
rect estimation of the spectral density kernel and
propose to use sums of periodograms.
The functional discrete Fourier transform (fDFT) is
defined as

X̃ (T )
ω =

1√
2πT

T−1∑
t=0

exp(−iωt)Xt

for ω ∈ [−π, π] and T ≥ 1. The periodogram
kernel is then defined as

p(T )
ω (τ, σ) = [X̃ (T )

ω (τ )][X̃
(T )
ω (σ)]

for each τ, σ ∈ [0, 1], where x̄ denotes the complex

conjugate of x ∈ C.
The estimator of the minimum distance is defined
as

m̂T = 2π
[ 2

T

bT/2c∑
k=2

〈p(T )
ωk
, p(T )

ωk−1
〉

−
∥∥∥ 1

T

bT/2c∑
k=1

[p(T )
ωk

+ p̄(T )
ωk

]
∥∥∥2

2

]
,

where ωk are the canonical frequencies defined by
ωk = 2πk/T for 1 ≤ k ≤ bT/2c and T ≥ 1.

Hypothesis

We want to test the hypothesis

H0 : m2 = 0 versus H1 : m2 > 0.

To perform the test, we establish asymptotic distribution of
the estimator m̂T .

Asymptotic distribution of estimator

Suppose that {Xt}t∈Z is strictly stationary sequence of
L2([0, 1],R)-valued random elements with moments of all
orders, the integral∫ 1

0

∫ 1

0

∑
t1,t2,t3∈Z

|E[Xt1
(τ )Xt2

(σ)Xt3
(τ )X0(σ)]|dτdσ

is finite and the series∑
t1,...,tk−1∈Z

(1 + |tj |)‖ cum(Xt1
, . . . ,Xtk−1

,X0)‖2

converges for j = 1, 2, . . . , k − 1 and all k ≥ 1. Then
√
T (m̂T −m2)

d−→ N(0, v 2) as T →∞,
where v 2 is the asymptotic variance. Under the null hypoth-
esis, v 2 is given by v 2

H0
= 8π2‖f0‖4

2.

Rejection rule

The null hypothesis is rejected if

m̂T >
v̂H0√
T
z1−α,

where v̂H0
is a consistent estimator of the asymptotic

standard deviation given by

v̂H0
=

4π

T

bT/2c∑
k=2

〈p(T )
ωk
, p(T )

ωk−1
〉

for T ≥ 1 and z1−α is the (1− α)-quantile of the standard
normal distribution.

Finite sample performance

Under the null hypothesis, we simulate i.i.d. standard Brow-
nian motions and uncorrelated but dependent values of
FARCH(1) process.

Table: Empirical rejection probabilities (in percentage) under the null
hypothesis. The numbers in brackets give the corresponding results of
the test of Zhang [2016].

Brownian Motion FARCH(1)
T 10% 5% 1% 10% 5% 1%

128
9.5 4.8 1.1 11.1 5.7 0.8

(11.0) (4.2) (0.8) (10.7) (5.9 ) (0.9)

Under the alternative hypothesis, we consider the values of
FAR(1) process with two different integral operators (Gaus-
sian or Wiener) and i.i.d. standard Wiener processes as er-
rors.

Table: Empirical rejection probabilities (in percentage) under the
alternative hypothesis. The numbers in brackets give the
corresponding results of the test of Zhang [2016].

Kernel Gaussian Wiener
T 10% 5% 1% 10% 5% 1%

128
82.6 80.7 65.9 87.6 82.4 66.9

(86.1) (83.7) (58.5) (89.9) (83.1) (59.7)

256
99.0 98.2 98.2 99.4 98.3 94.2

(99.6) (99.2) (99.0) (99.9) (99.5) (98.6)
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