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When do want to test for white noise?

I The validity of a statistical method (testing whether the data
is a simple random sample).

I The goodness of fit of a statistical model (testing whether the
errors of the model are independent or uncorrelated).
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Two approaches

I Time-domain tests based on autocovariances or
autocorrelations.

I Frequency-domain tests based on spectral densities.
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Autocovariances and autocorrelations

I {Xt}t∈Z is a stationary sequence of random variables.

I {γh}h∈Z are autocovariances defined by γh = Cov(Xh,X0), for
each h ∈ Z.

I {ρh}h∈Z are autocorrelations defined by ρh = γh/γ0 for each
h ∈ Z.
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Time-domain approach

The idea is to investigate the autocovariances or autocorrelations
and to check if γh = 0 or ρh = 0 for each h 6= 0.
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Estimating autocovariances

Definition

The sample autocovariance is defined by

γ̂h = n−1

n−|h|∑
j=1

(Xj+|h| − X )(Xj − X )

for |h| < n, where X = n−1
∑n

j=1 Xj .

γh is estimated using n − |h| observations with |h| < n.
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Estimating autocorrelations

Definition

The sample autocorrelation is defined by

ρ̂h =
γ̂h
γ̂0

for |h| < n.
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The portmanteau test

Box and Pierce (1970) proposed to use the following test statistic

QBP = n
h∑

j=1

ρ̂2
j ,

where the parameter h is called the lag truncation number.

If Xt ’s are iid random variables, then QBP
d−→ χ2

h as n→∞.

If Xt ’s are residuals of ARMA(p, q) model with iid errors, then

QBP
d−→ χ2

h−(p+q) as n→∞.
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Univariate and multivariate cases

Univariate case

I Box and Pierce (1970), Pierce (1972), Davies, Triggs and
Newbold (1977), Ljung and Box (1978), McLeod and
Li (1983), Ljung (1986), Peña and Rodŕıguez (2002).

Multivariate case

I Chitturi (1974, 1976), Hosking (1980, 1981), Li and
MacLeod (1981), Mahdi and MacLeod (2010).
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Noncorrelation vs independence

I Box and Pierce (1970) proposed test works under the
assumption of iid random variables.

I If the errors are uncorrelated but not independent, the test is
not reliable (see Romano and Thombs (1996) and Francq,
Roy and Zaköıan (2005)).
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Frequency-domain approach

The idea is to compare the spectral density corresponding to the
sequence of the random variables and the spectral density of white
noise.
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Spectral density

Definition

The spectral density is a discrete-time Fourier transform of
{γh}j∈Z given by

f (ω) =
1

2π

∞∑
j=−∞

γje
−iωj

for each ω ∈ [−π, π] provided that
∑∞

j=−∞ |γj |, where i =
√
−1.
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Inverse of discrete-time Fourier transform

Proposition

Suppose that the sequence {γh}h∈Z is absolutely summable. Then

γh =

∫ π

−π
f (ω)e iωhdω

for each h ∈ Z, where i =
√
−1.

The spectral density f and {γh}h∈Z form a Fourier pair.
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Spectral density of white noise

If Xt ’s are uncorrelated, i.e. γh = 0 for each h 6= 0, then

f (ω) =
1

2π

∞∑
j=−∞

γje
−iωj =

γ0

2π

for each ω ∈ [−π, π].
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Frequency-domain test for white noise

Hong (1996) proposes a test for white noise based on the
divergence measure

Q2(f , f0) = 2π

∫ π

−π

∣∣∣∣ f (ω)

γ0
− 1

2π

∣∣∣∣2dω.
f is estimated using a kernel estimator and the appropriately
standardised test statistic, under certain assumptions, is
asymptotically standard normal if Xt ’s are iid.
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Frequency-domain approach

Developed by Durlauf (1991), Hong (1996), Deo (2000), Chen and
Deo (2004), Dette, Kinsvater and Vetter (2010), Shao (2011).

P. Bagchi, V. Characiejus, H. Dette Testing for white noise in functional time series



Motivation and background
New test for white noise

Finite sample performance
Conclusions and future work

Classical problem
Time-domain approach
Frequency-domain approach
Functional time series

Tests for functional time series

Time-domain tests for independence

I Gabrys and Kokoszka (2007), Gabrys, Horváth, and
Kokoszka (2010);

I Horváth, Hušková, and Rice (2013).

Frequency-domain test for white noise

I Zhang (2016).
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Time-domain tests for functional observations

Gabrys and Kokoszka (2007)

I A portmanteau test of independence and identical distribution
of functional observations.

I Based on the Karhunen–Loéve expansion.

I Need to choose the number of principal components p and
the lag truncation number h.

I Extended by Gabrys, Horváth, Kokoszka (2010) to test for
independence in the errors of a functional linear model.
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Time-domain tests for functional observations (2)

Horváth, Hušková, and Rice (2013)

I A test that is based on the sum of the L2 norms of the
empirical correlation functions.

I There is no need to choose the number of principal
components p and the lag parameter h goes to infinity as the
sample size increases.
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Frequency-domain tests for functional observations

Zhang (2016)

I A Cramér-von Mises type test based on the L2 norm of the
functional periodogram function.

I Does not involve the choices of the functional principal
components or the lag truncation number.

I The approach is robust to dependence within white noise.

I The limiting distribution of the test statistic is non-pivotal and
a block bootstrap procedure is needed to obtain the critical
values.
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Our test

I A frequency-domain test for white noise in functional time
series.

I The asymptotic distribution of our test statistic is simple and
our approach does not need bootstrap to obtain the critical
values.

I We do not need to choose the number of functional principal
components nor do we need to choose the lag truncation
number.

I Our test is a generalisation of the test proposed by Dette,
Kinsvater and Vetter (2010).
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Functional time series

{Xt}t∈Z are stationary L2[0, 1]-valued random elements.

Definition

The autocovariance kernels {γh}h∈Z of {Xt}t∈Z are defined by

γh(τ, σ) = Cov[Xh(τ),X0(σ)]

for each τ, σ ∈ [0, 1] and h ∈ Z.
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White noise and hypothesis

Definition

{Xt}t∈Z is white noise if Xt ’s are uncorrelated, i.e. if γh = 0 for
each h 6= 0.

We are interested in testing the hypothesis that {Xt}t∈Z is white
noise.
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Spectral density kernel

Definition

The spectral density kernel is a discrete-time Fourier transform of
{γh}h∈Z defined by

fω =
1

2π

∞∑
j=−∞

γje
−iωj

for ω ∈ [−π, π] provided that
∑∞

j=−∞ ‖γj‖2 <∞.

If Xt ’s are uncorrelated, then fω = γ0/(2π).

The spectral density kernel is investigated by Panaretos and
Tavakoli (2013).
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Distance to white noise

We measure the distance between fω, ω ∈ [−π, π], and γ0/(2π)
using the following distance function

m2 =

∫ π

−π
‖fω − γ0/(2π)‖2

2dω.

Also, we have that

m2 =

∫ π

−π
‖fω‖2

2dω −
1

2π
‖γ0‖2

2 =
1

2π

∑
j 6=0

‖γj‖2
2.

The last equality clearly shows that the distance is equal to 0 if
and only if Xt ’s are uncorrelated.
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Hypothesis

The hypothesis that we test is as follows

H0 : m2 = 0 versus H1 : m2 > 0.

To perform this test, we need an estimator of the distance m2.
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fDFT and periodogram kernel

Definition

The functional discrete Fourier transform (fDFT) is defined as

X̃ (T )
ω =

1√
2πT

T−1∑
t=0

Xte
−iωt

for ω ∈ [−π, π] and T ≥ 1.

Definition

The periodogram kernel is defined as

p(T )
ω (τ, σ) = [X̃ (T )

ω (τ)][X̃
(T )
ω (σ)]

for each τ, σ ∈ [0, 1], where x̄ is the complex conjugate of x ∈ C.
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Estimator of minimum distance

To estimate the distance m2, we avoid direct estimation of the
spectral density kernel and propose to use sums of inner-products
and norms of the periodogram kernels.

The estimator of m2 is defined as

m̂T = 2π

[
2

T

bT/2c∑
k=2

〈p(T )
ωk

, p(T )
ωk−1
〉 −

∥∥∥ 1

T

bT/2c∑
k=1

[p(T )
ωk

+ p̄(T )
ωk

]
∥∥∥2

2

]
,

where ωk are the Fourier frequencies defined by ωk = 2πk/T for
1 ≤ k ≤ bT/2c and T ≥ 1.
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Intuition behind Riemann sums

Using the results of Panaretos and Tavakoli (2013), we obtain

E

[
2

T

bT/2c∑
k=2

〈p(T )
ωk

, p(T )
ωk−1
〉
]
→ 1

2π

∫ π

−π
‖fω‖2

2dω

and

E
∥∥∥ 1

T

bT/2c∑
k=1

[p(T )
ωk

+ p̄(T )
ωk

]
∥∥∥2

2
→ 1

(2π)2
‖γ0‖2

2

as T →∞.
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Intuition behind estimator

Recall that

m2 =

∫ π

−π
‖fω‖2

2dω −
1

2π
‖γ0‖2

2.

If

2π E
[ 2

T

bT/2c∑
k=2

〈p(T )
ωk

, p(T )
ωk−1
〉
]
≈
∫ π

−π
‖fω‖2

2dω

and

2π E
∥∥∥ 1

T

bT/2c∑
k=1

[p(T )
ωk

+ p̄(T )
ωk

]
∥∥∥2

2
≈ 1

2π
‖γ0‖2

2,

we might expect that
m̂T ≈ m2.
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Asymptotic distribution of the estimator

Theorem

Suppose that

(i) {Xt}t∈Z is strictly stationary sequence of L2[0, 1]-valued
random elements such that E ‖X0‖k2 <∞ for each k ≥ 1;

(ii)
∫ 1

0

∫ 1
0

∑
t1,t2,t3∈Z |E[Xt1(τ)Xt2(σ)Xt3(τ)X0(σ)]|dτdσ <∞;

(iii)
∑

t1,...,tk−1∈Z(1 + |tj |)‖ cum(Xt1 , . . . ,Xtk−1
,X0)‖2 <∞ for

j = 1, 2, . . . , k − 1 and all k ≥ 2.

Then √
T (m̂T −m2)

d−→ N(0, v2) as T →∞,

where v2 is the asymptotic variance. Under the null hypothesis, v2

is given by v2
H0

= 8π2‖f0‖4
2.
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Rejection rule

A consistent estimator of the asymptotic standard deviation under
the null hypothesis is given by

v̂H0 =
4π

T

bT/2c∑
k=2

〈p(T )
ωk

, p(T )
ωk−1
〉

for T ≥ 1.

The null hypothesis is rejected if

m̂T >
v̂H0√
T
z1−α,

where z1−α is the (1− α)-quantile of the standard normal
distribution.
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Approximation of the power function

We have that

P
(
m̂T >

v̂H0√
T
z1−α

)
≈ Φ

(√
T
m2

v
− vH0

v
z1−α

)
and this shows that our test is consistent.
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Simulation study

I Simulation setup is similar to that of Zhang (2016).

I The sample size T is chosen to be equal to 128, 256, 512 or
1024.

I The number of the Monte Carlo replications is 1000.

I The data is generated on a grid on 1000 equispaced points in
[0, 1] for each functional observation.

I The periodogram kernels are calculated at 1000× 1000
equispaced points in [0, 1]2.
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Functional time series under the null hypothesis

We simulate iid

I standard Brownian motions;

I Brownian bridges.

We also simulate the FARCH(1) process defined as

Xt(τ) = εt(τ)

√
τ +

∫ 1

0
cψ exp

(
τ2 + σ2

2

)
X 2
t−1(σ)dσ

for t ≥ 1 and τ ∈ [0, 1], where {εt}t∈Z are iid standard Brownian
motions and cψ = 0.3418.
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Empirical rejection probabilities under the null

Brownian motion Brownian bridge FARCH(1)

T 10% 5% 1% 10% 5% 1% 10% 5% 1%

128
9.5 4.8 1.1 10.8 5.3 0.8 11.1 5.7 0.8

(11.0) (4.2) (0.8) (11.0) (5.4) (1.1) (10.7) (5.9 ) (0.9)

256
9.6 5.1 1.3 10.3 5.4 0.9 10.9 5.5 0.7

(10.0) (4.2) (0.9) (9.5) (4.8) (0.7) (11.1) (5.2) (0.9)

512
10.1 5.1 0.8 9.7 5.1 1.0 10.9 5.3 0.8
(9.9) (4.7) (0.6) (10.3) (5.9) (1.3) (11.1) (4.9) (0.7)

1024
9.8 4.9 0.9 9.9 5.2 0.8 10.5 5.2 0.7

(10.0) (4.9) (0.8) (9.9) (5.1) (1.1) (9.8) (4.8) (1.2)

The numbers in brackets give the corresponding results of the test of Zhang (2016)

P. Bagchi, V. Characiejus, H. Dette Testing for white noise in functional time series



Motivation and background
New test for white noise

Finite sample performance
Conclusions and future work

Monte Carlo simulation
Performance under the null hypothesis
Performance under the alternative hypothesis

Functional time series under the alternative hypothesis

We simulate observations from the FAR(1) model

Xt − µ = ρ(Xt−1 − µ) + εt

for t ≥ 1, where ρ : L2[0, 1]→ L2[0, 1] is an integral operator
defined by

ρf (τ) =

∫ 1

0
K(τ, σ)f (σ)dσ

for f ∈ L2[0, 1] and τ ∈ [0, 1] with some kernel K ∈ L2[0, 1]2 and
iid errors {εt}t∈Z.
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Functional time series under the alternative hypothesis

We consider four different FAR(1) models where the errors are
either Brownian motions or Brownian bridges and the kernel of the
integral operator is either the Gaussian kernel

KG (τ, σ) = cG exp

(
τ2 + σ2

2

)
or the Wiener kernel

KW (τ, σ) = cW min(τ, σ),

where the constants cG and cW are chosen such that the
correspoding Hilbert-Schmidt norm is equal to 0.3.

P. Bagchi, V. Characiejus, H. Dette Testing for white noise in functional time series



Motivation and background
New test for white noise

Finite sample performance
Conclusions and future work

Monte Carlo simulation
Performance under the null hypothesis
Performance under the alternative hypothesis

Empirical rejection probabilities under the alternative

εt Brownian motion

K Gaussian Wiener

T 10% 5% 1% 10% 5% 1%

128
82.6 80.7 65.9 87.6 82.4 66.9

(86.1) (83.7) (58.5) (89.9) (83.1) (59.7)

256
99.0 98.2 98.2 99.4 98.3 94.2

(99.6) (99.2) (99.0) (99.9) (99.5) (98.6)

512
99.8 99.6 99.6 99.9 99.9 99.6

(99.7) (99.5) (99.0) (99.9) (99.8) (99.1)

1024
100.0 99.9 99.7 100.0 100.0 99.8

(100.0 ) (100.0) (99.8 ) (100.0) (99.8) (99.5)

The numbers in brackets give the corresponding results of the test of Zhang (2016)
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Empirical rejection probabilities under the alternative

εt Brownian bridge

K Gaussian Wiener

T 10% 5% 1% 10% 5% 1%

128
80.1 77.4 60.1 87.6 79.9 61.2

(79.2) (68.3) (54.4) (80.2) (65.8) (58.1)

256
100.0 97.0 95.5 99.9 98.3 98.1

(100.0) (98.2) (97.2) (100.0) (99.1) (98.8)

512
100.0 99.3 99.3 100.0 100.0 98.8

(100.0 ) (98.7) (98.1) (100.0) (100.0) (99.1)

1024
100.0 100.0 100.0 100.0 100.0 100.0

(100.0) (100.0) (99.4) (100.0) (100.0) (100.0)

The numbers in brackets give the corresponding results of the test of Zhang (2016)
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Concluding remarks

I We propose a frequency-domain based test for white noise
(noncorrelation) in functional time series with a simple
asymptotic distribution.

I Our test neither requires a choice of the lag truncation
number nor the choice of the number of functional principal
components.

I Critical values of the test statistic can be easily obtained,
there is no need for bootstrap.

I The finite sample performance in testing for white noise is
very similar to that of Zhang (2016).
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Future work

I Adapt the test for the situation when we do not observe the
random elements directly but we only have residuals,
i.e. adapt the test for model diagnostic checking.

I Establish the asymptotic distribution of the test statistic
under simpler and weaker assumptions.
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