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Motivation and problem



PM10 data

• Air quality data from Graz, Austria.
• The amount of particulate matter with a diameter of 10 µm or
less (PM10) is measured.

• PM10 can settle in the bronchi and lungs and cause health
problems.

• Starting on February 18, 2010, the amount of PM10 in µg/m3 is
recorded every 30 minutes resulting in 48 observations per day.
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Raw data
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Weekly mean curve
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Weekly averages
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Functional time series

• A functional time series is a sequence {Xt}t∈Z such that each Xt
is a curve {Xt(u)}u∈[0,1].

• We separate a continuous time process {ξ(u)}u∈R using natural
consecutive intervals, i.e.

Xt(u) = ξ(t+ u)

for u ∈ [0, 1] and t ∈ Z.
• Such segmentation accounts for a periodic structure in the
underlying continuous time process.

• There might still remain a periodic signal with respect to the
discrete time parameter t ∈ Z.
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Model

{Xt}t∈Z is a time series with values in a real separable Hilbert space
H (e.g. L2[0, 1]) defined by

Xt = µ+ st + Yt

for each t ∈ Z, where

• µ ∈ H;
• {st}t∈Z ⊂ H is a deterministic sequence such that

st = st+T and
T∑

t=1
st = 0

for all t ∈ Z with some T ≥ 2;
• {Yt}t∈Z is a stationary sequence of zero mean random elements
with values in H.
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Hypothesis testing

We develop a methodology to test

H0 : Xt = µ+ Yt versus H1 : Xt = µ+ st + Yt

with an unknown T ≥ 2.
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Main results



Frequency domain approach

Our methodology is based on the frequency domain approach to the
analysis of functional time series.
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DFT

Definition
The discrete Fourier transform (DFT) of X1, . . . , Xn is defined by

Xn(ωj) = n−1/2
n∑
t=1

Xte−itωj

for n ≥ 1, where

i) ωj = 2πj/n with j = −⌊(n− 1)/2⌋, . . . , ⌊n/2⌋ are the Fourier
frequencies;

ii) i =
√
−1.
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Maximum of periodogram

The test statistic is given by

Mn = max
1≤j≤q

∥Xn(ωj)∥2

for n > 2, where

i) ωj = 2πj/n with 1 ≤ j ≤ q = ⌊n/2⌋;
ii) ∥ · ∥ is the norm of the complexification of H.
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Maximum of periodogram

The test statistic is given by

Mn = max
1≤j≤q

∥Xn(ωj)∥2

for n > 2.

• Small values of Mn indicate that there is no periodic component.
• Large values of Mn indicate that there is a periodic component.
• We need a criterion to decide when Mn is small and when Mn is
large.
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Linear processes

Suppose that {Yt}t∈Z is a linear process with values in H given by

Yt =
∞∑

k=−∞

ak(εt−k)

for each t ∈ Z, where

• {εt}t∈Z are iid zero mean random elements with values in H;
• {ak}k∈Z ⊂ L(H).
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Assumptions

Assumption 1

i) E∥ε0∥r < ∞ where r > 2 if dimH < ∞ and r ≥ 4 otherwise;
ii) the eigenvalues λk of E[ε0 ⊗ ε0] are distinct and the sequence

{kλk}k≥1 is ultimately non-increasing;
iii) some technical conditions on the decay rate of {λk}k≥1.

Assumption 2

i)
∑

k̸=0 log(|k|)∥ak∥ < ∞;
ii) A−1(ω) exists for each ω ∈ [−π, π], where A(ω) =

∑∞
k=−∞ ake−ikω

with ω ∈ [−π, π] is the transfer function;
iii) supω∈[0,π] ∥A−1(ω)∥ < ∞.
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Main result

Theorem
Under H0 and Assumptions 1 and 2, we have that

λ−1
1

(
max
1≤j≤q

∥A−1(ωj)Xn(ωj)∥2 − bn
)

d−→ G as n → ∞,

where

• A(ωj) =
∑∞

k=−∞ ake−ikωj with j = 1, . . . , q;
• bn = λ1 log q− λ1

∑∞
j=2 log(1− λj/λ1);

• G is the standard Gumbel distribution with the CDF given by
F(x) = exp{− exp{−x}} for x ∈ R.
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FAR(1)

{Yt}t∈Z is an FAR(1) model given by

Yt = ρ(Yt−1) + εt =
∞∑
j=0

ρj(εt−j)

for t ∈ Z with ρ ∈ L(H).

Assumption 3

i) There is an n0 ≥ 1 such that ∥ρn0∥ < 1;
ii) ρ̂ is an estimator of ρ such that

∥ρ̂− ρ∥op = op(1/τ ′n)

as n → ∞ with τ ′n ≥ log n.
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The transfer function, residuals and their eigenvalues

• {ε̂k}2≤k≤n are the residuals given by

ε̂k = Xk − ρ̂ (Xk−1)

for k = 2, . . . ,n.
• {λ̂j}j≥1 are the eigenvalues of

1
n− 1

n∑
k=2

ε̂k ⊗ ε̂k.

• The transfer function A(ω) = (I− e−iωρ)−1 and hence
A−1(ω) = I− e−iωρ for ω ∈ [−π, π].
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Test statistic

Theorem
Under H0 and Assumptions 1 and 3,

Gn := λ̂−1
1 max

1≤j≤q
∥(I− e−iωj ρ̂ )(Xn(ωj))∥2

− log q+max

{ τn∑
j=2

log(1− λ̂j/λ̂1), cn
}

d−→ G

as n → ∞, where {τn}n≥1 ⊂ N and {cn}n≥1 ⊂ R are sequences that
satisfy certain technical conditions.
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Consistency

Theorem
Under H1,

Gn/ℓn
p−→ ∞ as n → ∞

for any positive sequence ℓn = o(n) as n → ∞ provided certain
technical conditions are satisfied.
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Empirical study



PM10 time series

• We plot the points (j,Gn(j)) with j = 1, . . . , q = 1998 and

Gn(j) := λ−1
1 ∥(I− e−iωj ρ̂ )(Xn(ωj))∥2

− log q+max

{ τn∑
j=2

log(1− λ̂j/λ̂1), cn
}
,

where n = 3997.
• Observe that

Gn = max
1≤j≤q

Gn(j).
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PM10 time series
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Representation of periodic signals

Lemma
Suppose that {st}t∈Z is a deterministic sequence with values in H
such that

st = st+T and
T∑

t=1
st = 0

for all t ∈ Z with some T ≥ 2. Then there exist w11, . . . ,w1⌊T/2⌋ ∈ H
and w21, . . . ,w2⌊T/2⌋ ∈ H such that

st =
⌊T/2⌋∑
k=1

[cos(2πkt/T)w1k + sin(2πkt/T)w2k]

for all t ∈ Z.

21/24



Yearly periodic component
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Periodic component
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Periodic component
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Periodic component
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Periodic component
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Periodic component
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Periodic component
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Deseasonalized data
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Summary



Summary

• A general test for periodic signals in Hilbert space valued time
series when the length of the period is unknown.

• The appropriately standardized maximum of the periodogram
converges in distribution to the standard Gumbel distribution.

• A weekly as well as a yearly periodic components are detected
in the PM10 data.

• The periodic signals in the PM10 data are not pure sinusoids but
are actually driven by several sinusoids.

https://imada.sdu.dk/u/characiejus/
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