Testing for hidden periodicities in functional time series

Vaidotas Characiejus^a

Joint work with Clément Cerovecki^a and Siegfried Hörmann^b

^aDépartement de Mathématique, Université libre de Bruxelles, Belgium vaidotas.characiejus@ulb.ac.be

^bInstitute of Statistics, Graz University of Technology, Austria

RSSB2018 Ovifat, October 19, 2018

Outline

Functional time series with periodicities

Asymptotic results

Summary

Model Hypothesis DFT and periodogram Test statistic

Time series with values in $\mathbb H$

$\{X_t\}_{t\geq 1}$ is a time series with values in a real separable Hilbert space \mathbb{H} (\mathbb{R}^d with $d \geq 1$, ℓ^2 , $L^2[0, 1]$, etc.).

Model Hypothesis DFT and periodogram Test statistic

Simple model with periodic signal

 $\{X_t\}_{t\geq 1}$ is defined by

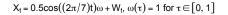
$$X_t = a\cos(\theta t)\omega + Z_t$$

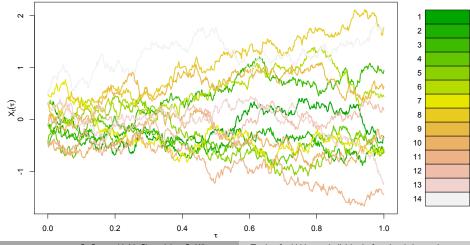
for $t \geq 1$, where (i) $a \in \mathbb{R}$, $\theta \in [-\pi, \pi]$ and $\omega \in \mathbb{H}$ are non-random; (ii) $\{Z_t\}_{t\geq 1}$ are iid \mathbb{H} -valued random elements with zero means.

The period of $\{X_t\}_{t\geq 1}$ is equal to $d = 2\pi/\theta$.

Model Hypothesis DFT and periodogram Test statistic

Simulated example





C. Cerovecki, V. Characiejus, S. Hörmann

Testing for hidden periodicities in functional time series

Model Hypothesis DFT and periodogram Test statistic

Hypothesis

The hypothesis that we want to test is as follows

$$H_0$$
 : $a\omega = 0$ versus H_1 : $a\omega \neq 0$.

To detect periodicities in the data, we propose to use the periodogram.

Model Hypothesis DFT and periodogram Test statistic

DFT and periodogram

Definition

The DFT of $\{X_t\}_{1 \le t \le n}$ is defined by

$$\mathcal{X}_n(\omega) = n^{-1/2} \sum_{t=1}^n X_t e^{-it\omega}$$

with
$$i = \sqrt{-1}$$
 for $\omega \in [-\pi, \pi]$ and $n \ge 1$.

Definition

The periodogram of $\{X_t\}_{1 \le t \le n}$ is defined by

$$I_n(\omega) = \mathcal{X}_n(\omega) \otimes \mathcal{X}_n(\omega) = \langle \cdot, \mathcal{X}_n(\omega) \rangle \mathcal{X}_n(\omega)$$

for $\omega \in [-\pi, \pi]$ and $n \ge 1$.

Model Hypothesis DFT and periodogram Test statistic

Maximum of periodogram

The test statistic is given by

$$M_n = \max_{1 \leq j \leq q} \|I_n(\omega_j)\|\|_2 = \max_{1 \leq j \leq q} \|\mathcal{X}_n(\omega_j)\|^2$$

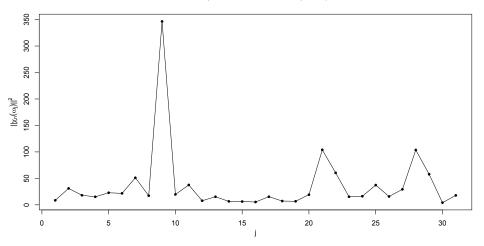
for $n \ge 1$, where

(i) ω_j = 2πj/n are the Fourier frequencies with 1 ≤ j ≤ q;
(ii) ||| · |||₂ is the Hilbert-Schmidt norm;
(iii) q = ⌊(n − 1)/2⌋.

Model Hypothesis DFT and periodogram Test statistic

Simulated example (cont.)

The squared norm of the DFT (n = 63)



Univariate case Assumptions and notation Main results

 $\mathbb{H} = \mathbb{R}$

Theorem (Davis and Mikosch (1999))

Let us suppose that $\{Z_t\}_{t\geq 1}$ are iid random variables such that $E Z_1 = 0$, $E |Z_1|^2 = 1$ and $E |Z_1|^s < \infty$ with s > 2. Then

$$\max_{1\leq j\leq q} \mathit{I}_n(heta_j) - \log q \xrightarrow{d} \mathcal{G} \quad ext{as} \quad n o \infty,$$

where $q = \lfloor (n-1)/2 \rfloor$ and \mathcal{G} is the standard Gumbel distribution with the CDF given by $F(x) = \exp\{-\exp\{-x\}\}$ for $x \in \mathbb{R}$.

Assumptions

Assumption 1

 $\{X_t\}_{t\geq 1}$ are iid zero mean random elements with values in \mathbb{H} .

The eigenvectors of $E[X_1 \otimes X_1]$ are denoted by $\{v_k\}_{k \ge 1}$ and their corresponding eigenvalues are denoted by $\{\lambda_k\}_{k \ge 1}$.

Assumption 2

 $\lambda_k > \lambda_{k+1}$ for each $k \ge 1$.

Univariate case Assumptions and notation Main results

Finite dimensional approximation Since $\{v_k\}_{k\geq 1}$ is an ONB of \mathbb{H} , we have that

$$X_t = \sum_{k=1}^{\infty} \langle X_t, v_k \rangle v_k$$

for $t \ge 1$. We denote

$$X_t^p = \sum_{k=1}^p \langle X_t, v_k \rangle v_k, \quad \mathcal{X}_n^p(\omega) = n^{-1/2} \sum_{t=1}^n X_t^p e^{-it\omega}$$

for $t \geq 1$ and $\omega \in [-\pi, \pi]$. We also denote

$$M_n^p = \max_{1 \le j \le q} \|\mathcal{X}_n^p(\omega_j)\|^2$$

for $n \geq 1$.

C. Cerovecki, V. Characiejus, S. Hörmann

Testing for hidden periodicities in functional time series

Asymptotic distribution when p is fixed

Theorem 1

If $\mathsf{E} \|X_1\|^s < \infty$ with s > 2 and $p \ge 1$ is fixed, then

$$a_n^{-1}(M_n^p-b_n^p) \xrightarrow{d} \mathcal{G} \quad as \quad n \to \infty,$$

where

(i)
$$a_n = \lambda_1$$
;
(ii) $b_n^p = \lambda_1 \log(q \alpha_{1,p})$ with $q = \lfloor (n-1)/2 \rfloor$ and

$$\alpha_{1,p} = \prod_{j=2}^{p} (1 - \lambda_j / \lambda_1)^{-1}.$$

Asymptotic distribution when $p = p_n \rightarrow \infty$

Theorem 2

Suppose that $\mathbb{E} \|X_1\|^4 < \infty$ and $p = p_n \to \infty$ as $n \to \infty$. Then

$$a_n^{-1}(M_n^{p_n}-b_n^{p_n}) \xrightarrow{d} \mathcal{G}$$
 as $n o \infty$

provided that

(i) $\{k\lambda_k\}_{k\geq 1}$ is eventually monotonic; (ii) $p_n^3/\lambda_n^{1/2} = o(n^{1/6}/\log^{7/6} n) \text{ as } n \to \infty$; (iii) $p_n = O(n^{\gamma_0}) \text{ as } n \to \infty \text{ with}$ $\gamma_0 < \min\{\min_{k\geq 2}\{k^{-1}(\lambda_1/\lambda_k - 1)\}, 1\}.$

Asymptotic distribution of M_n

Theorem 3

Suppose that $E ||X_1||^s < \infty$ with $s \ge 4$ and that the assumptions of Theorem 2 are satisfied. Then

$$a_n^{-1}(M_n-b_n) \xrightarrow{d} \mathcal{G}$$
 as $n o \infty$

provided that there exists a positive sequence $\{\ell_k\}_{k\geq 1}$ such that $\sum_{k\geq 1}\ell_k = 1$ and (i) $\sum_{k>p_n}\ell_k^{-s/2} \mathbb{E}|\langle X_1, v_k \rangle|^s = o(n^{s/2-2})$ as $n \to \infty$; (ii) $\sum_{k>p_n}(\lambda_k/\ell_k)^{s/2} = o(n^{-1})$ as $n \to \infty$.

Summary

- Hidden periodicities in functional time series;
- Asymptotic distribution of the maximum of the periodogram;
- ► Generalisation of the result of Davis and Mikosch (1999);
- Asymptotic distribution when the dimension of the subspace is fixed or grows to infinity;
- Results hold when the eigenvalues are decaying exponentially or polynomially.