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Problem and data example



Periodicities in time series

• We consider testing for periodicities in time series.

• Periodicity is one of the most important characteristics of time
series.

• Tests for periodicities go back to the very origins of the field
(see, for example, Schuster (1898), Walker (1914), Fisher (1929)
among others).

• We investigate multivariate and functional time series.
• We do not assume that the period of the periodic component is
known.
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PM10 data

• Air quality data from Graz, Austria.

• The amount of particulate matter of up to 10 µm in diameter
(PM10) is measured.

• Data set consists of 175 observation days in the winter season of
2010-2011 (October - March).

• The amount of PM10 is recorded every 30 min (48 observations
per day).

• The measurement unit is µg/m3.
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PM10 data
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PM10 time series

• We model this data set as a sequence of curves, where each
curve represents a single day.

• The overall process might not be stationary but consecutive
curves might constitute a stationary functional time series.
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Periodic component

• Transport, economic activity and weather affect the air quality
among other things.

• We expect that some periodic component is present in the data.
• There are some natural periodicities of the periodic component
(for example, weekly, monthly, yearly).
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Mean curves
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Known period

• Hörmann, Kokoszka, and Nisol (2018) consider testing for
periodicity in functional time series when the period is known.

• The same PM10 time series is considered and the presence of a
weekly periodic component is investigated.

• They show that no weekly periodic component can be detected
if only daily averages are considered and the functional
structure is disregarded.

• Their test based on a fully functional ANOVA test for dependent
data indicates that there is a weekly periodic pattern present in
the PM10 time series.
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Hidden periodicities

• We focus on developing a test when we do not know the period
of a periodic component.

• We also investigate if there are any other periodic components
present in the PM10 time series.
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Model

We consider time series {Yt}t∈Z with values in a separable Hilbert
space H given by

Yt = µ+ st + Xt,

where

i) µ ∈ H;

ii) {st}t∈Z is a deterministic sequence with values in H such that

st = st+d and
d∑
t=1

st = 0

for all t ∈ Z with some d > 1;
iii) {Xt}t∈Z is a stationary sequence of zero mean random elements

with values in H.
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Problem

• Our goal is to develop a procedure to test for the presence of a
periodic component of any period d > 1.

• Consider testing

H0 : Yt = µ+ Xt versus H1 : Yt = µ+ st + Xt.

• We need a test statistic that captures the presence of any
periodic component.

11/47



Problem

• Our goal is to develop a procedure to test for the presence of a
periodic component of any period d > 1.

• Consider testing

H0 : Yt = µ+ Xt versus H1 : Yt = µ+ st + Xt.

• We need a test statistic that captures the presence of any
periodic component.

11/47



Problem

• Our goal is to develop a procedure to test for the presence of a
periodic component of any period d > 1.

• Consider testing

H0 : Yt = µ+ Xt versus H1 : Yt = µ+ st + Xt.

• We need a test statistic that captures the presence of any
periodic component.

11/47



Test statistic



Frequency domain approach

• Our test is based on the frequency domain approach to the
analysis of functional time series.

• The frequency domain approach to the analysis of functional
time series has been gaining attention in recent years (see, for
example, Panaretos and Tavakoli (2013), Hörmann, Kidziński and
Hallin (2015), Zhang (2016), Ch. and Rice (2020) among others).
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DFT and periodogram

Definition
The DFT of {Xt}1≤t≤n is defined by

Xn(ω) = n−1/2
n∑
t=1

Xte−itω

with i =
√
−1 for ω ∈ [−π, π] and n ≥ 1.

Definition
The periodogram of {Xt}1≤t≤n is defined by

In(ω) = Xn(ω)⊗Xn(ω) = 〈·,Xn(ω)〉Xn(ω)

for ω ∈ [−π, π] and n ≥ 1.
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Maximum of periodogram

The test statistic is given by

Mn = max
1≤j≤q

|||In(ωj)|||2 = max
1≤j≤q

‖Xn(ωj)‖2

for n > 2, where q = b(n− 1)/2c,

i) ωj = 2πj/n are the Fourier frequencies with 1 ≤ j ≤ q;

ii) ||| · |||2 is the Hilbert-Schmidt norm and ‖ · ‖ is the norm induced
by the inner product of H.
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Simple simulated example

{Yt}t≥1 is defined by

Yt = 0.5 cos((2π/7)t)ω +Wt

for t ≥ 1, where

i) ω(τ) = 1 for τ ∈ [0, 1];

ii) {Wt}t≥1 is a sequence of iid standard Wiener processes.

The period of {Yt}t≥1 is d = 7.
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Simple simulated example (cont.)
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Maximum of periodogram

• Small values of the maximum of the periodogram indicate that
there is no periodic component.

• Large values of the maximum of the periodogram indicate that
there is a periodic component.

• We need to establish the asymptotic distribution of the
maximum of the periodogram if we want to use it to test for
hidden periodicities.
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H = R

Theorem
Suppose that {Xt}t≥1 are iid random variables such that E X1 = 0,
E |X1|2 = 1 and E |X1|r <∞ with r > 2. Then

max
1≤j≤q

|Xn(ωj)|2 − log q d−→ G as n → ∞,

where q = b(n− 1)/2c and G is the standard Gumbel distribution
with the CDF given by F(x) = exp{− exp{−x}} for x ∈ R.

Davis and Mikosch (1999)
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Maximum of periodogram

• Does a similar result hold when H = Rd?

• Does a similar result hold when H is an infinite dimensional
separable Hilbert space?
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Asymptotic results



Intuition

• Assume for the moment that the {Xt}1≤t≤n are iid Gaussian
random vectors such that E X1 = 0 and E[X1X′1] = Id, where Id is
the identity matrix.

• Then we have that

max
1≤j≤q

‖Xn(ωj)‖2 = max
1≤j≤q

{ d∑
k=1

Ekj
}
,

where Ekj are iid Exp(1) for 1 ≤ k ≤ d and 1 ≤ j ≤ q.
• Hence, we have a maximum of q iid Erlang(d, 1) random
variables (a special case of the gamma distribution).
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H = Rd

Theorem
Suppose that {Xt}t≥1 are iid vectors in Rd such that E X1 = 0,
E[X1X′1] = Id and E‖X1‖r <∞ for some r > 2, where Id is the identity
matrix. Then

max
1≤j≤q

‖Xn(ωj)‖2 − cn
d−→ G as n → ∞,

where q = b(n− 1)/2c,

cn = log q+ (d− 1) log log q− log(d− 1)!

for n > 3 and G is the standard Gumbel distribution with the CDF
given by F(x) = exp{− exp{−x}} for x ∈ R.
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Assumptions and notation for the general case

We first investigate the situation when {Xt}t≥1 are iid zero mean
random elements with values in H.

{vk}k≥1 and {λk}k≥1 are the eigenvectors and eigenvalues of the
covariance operator E[X1 ⊗ X1] = E[〈·, X1〉X1].
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Projection onto a finite dimensional subspace

Since {vk}k≥1 is an ONB of H, we have that

Xt =
∞∑
k=1

〈Xt, vk〉vk

for t ≥ 1.

We denote

Xdt =
d∑

k=1
〈Xt, vk〉vk, X d

n (ω) = n−1/2
n∑
t=1

Xdt e−itω

for t ≥ 1 and ω ∈ [−π, π].

We also denote
Md

n = max
1≤j≤q

‖X d
n (ωj)‖2

for n ≥ 1.
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The idea of the proof

We have that

(Mn − bn)/λ1 = (Mn −Mdn
n )/λ1︸ ︷︷ ︸

A1

+(Mdn
n − bdnn )/λ1︸ ︷︷ ︸

A2

+(bdnn − bn)/λ1︸ ︷︷ ︸
A3

,

where dn → ∞ as n → ∞,

bdnn = λ1 log q− λ1

dn∑
j=2

log(1− λj/λ1)

and bn = limn→∞ bdnn .
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The idea of the proof

We start by noting that

(Mn − bn)/λ1 = (Mn −Mdn
n )/λ1︸ ︷︷ ︸

A1

+(Mdn
n − bdnn )/λ1︸ ︷︷ ︸

A2

+(bdnn − bn)/λ1︸ ︷︷ ︸
A3

.

• A1 goes to 0 in probability if dn → ∞ fast enough as n → ∞.

• A3 goes to 0 as n → ∞ as long as dn → ∞ as n → ∞.
• The challenge is A2. We need a sequence {dn}n≥1 that grows
slowly enough, but at the same time the intersection of the
sequences {dn}n≥1 in A1 and A2 cannot be empty.
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Gaussian approximation

Suppose that

• X1, . . . , Xn are independent zero mean random vectors in Rp;

• Y1, . . . , Yn are independent zero mean Gaussian random vectors
in Rp such that E[YiY′i] = E[XiX′i].

Consider the quantity

ρn(A) = sup
A∈A

|P(n−1/2(X1 + . . .+ Xn) ∈ A)− P(n−1/2(Y1 + . . .+ Yn) ∈ A)|,

where A is a class of Borel sets in Rp.
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Classical results

To make ρn(A) to be o(1) as n → ∞, we at least need

• p = o(n1/3) as n → ∞ when A is the class of Euclidean balls;

• p = o(n2/7) as n → ∞ when A is the class of all Borel
measurable convex sets.
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s-sparsely convex sets

• Chernozhukov, Chetverikov, Kato (2017) define the class Asp(s) of
s-sparsely convex sets.

• A set A is an s-sparsely convex set if

i) A is an intersection of finitely many convex sets Ak;
ii) the indicator function of each Ak, x 7→ IAk(x) depends only on s

components of its argument x = (x1, . . . , xp).

• Chernozhukov, Chetverikov, Kato (2017) only consider the
situation when s is fixed but in our problem s = 2dn → ∞ as
n → ∞.
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• Chernozhukov, Chetverikov, Kato (2017) only consider the
situation when s is fixed but in our problem s = 2dn → ∞ as
n → ∞.
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Gaussian approximation bound

We obtain that

ρn(Asp(2dn)) ≤ C · d
4
n log

7/6(dnn2)
λ
1/2
dn n

1/6
,

where C is a universal constant.
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Assumptions for the main theorem

Suppose that

i) E‖X1‖r <∞ for some r ≥ 4;

ii) λk > λk+1 for k ≥ 1 and {kλk}k≥1 is eventually monotonic;
iii) there exists {dn}n≥1 such that d4n/λ

1/2
dn = o(n1/6/ log7/6 n) and

dn = O(nγ0) as n → ∞ with

γ0 < min
{
min
k≥2

{ 1
k

(λ1
λk

− 1
)}
, 1
}
;

iv) there exists {ℓk}k≥1 such that ℓk > 0 for k ≥ 1,
∑∞

k=1 ℓk = 1,
∞∑
k=1

ℓ
−r/2
k E |〈X1, vk〉|r <∞ and

∑
k>dn

(λk/ℓk)
r/2 = o(1/n)

as n → ∞.
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Main theorem

Theorem
Suppose that the assumptions from the previous slide hold. Then

λ−1
1 (Mn − bn)

d−→ G

as n → ∞, where

bn = λ1 log q− λ1

∞∑
j=2

log(1− λj/λ1)

with q = b(n− 1)/2c and G is the standard Gumbel distribution with
the CDF given by F(x) = exp{− exp{−x}} for x ∈ R.
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Two examples

We write αn = Θ(βn) as n → ∞ if there exist k > 0, K > 0 and N ≥ 1
such that

kβn ≤ αn ≤ Kβn

for all n ≥ N.

The conditions of the main theorem are satisfied in the following
two cases:

a) λk = Θ(ρk) as k → ∞ with 0 < ρ < 1 (exponential decay);
b) λk = Θ(k−ν) as k → ∞ with ν > 1 (polynomial decay).
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Linear processes

Suppose that {Xt}t∈Z is a linear process given by

Xt =
∞∑

k=−∞

ak(εt−k)

for each t ∈ Z, where

• {ak}k∈Z ⊂ L(H) such that
∑∞

k=−∞ |||ak|||op <∞;

• {εt}t∈Z are iid zero mean random elements with values in H.

33/47



Linear processes

Suppose that {Xt}t∈Z is a linear process given by

Xt =
∞∑

k=−∞

ak(εt−k)

for each t ∈ Z, where

• {ak}k∈Z ⊂ L(H) such that
∑∞

k=−∞ |||ak|||op <∞;
• {εt}t∈Z are iid zero mean random elements with values in H.

33/47



Notation for linear processes

• We denote the DFT of ε1, . . . , εn by

E(ω) = n−1/2
n∑
t=1

εte−itω

for ω ∈ [−π, π] and n ≥ 1.

• We also use the impulse-response operator A(ω) defined by

A(ω) =
∞∑

k=−∞

ake−itω

for ω ∈ [−π, π].
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Lemma for linear processes

Lemma
Suppose that {Xt}t∈Z is a linear process such that

a)
∑

k̸=0 log(|k|)|||ak|||op <∞;
b) A−1(ω) exists for each ω ∈ [−π, π];
c) supω∈[0,π] |||A−1(ω)|||op <∞.

Then

max
1≤j≤q

‖A−1
n (ωj)Xn(ωj)‖2 − max

1≤j≤q
‖En(ωj)‖2 = oP(1) as n → ∞.

This is a generalization of the result by Walker (1965).
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FAR(1)

• Suppose that {Xt}t∈Z is an FAR(1) model given by

Xt = ρ(Xt−1) + εt =
∞∑
j=0

ρj(εt−j)

for t ∈ Z with ρ ∈ L(H) such that |||ρn0 ||| < 1 with some n0 ≥ 1.

• Then A−1(ω) exists for each ω ∈ [−π, π] and
supω∈[0,π] |||A−1(ω)|||op <∞.
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Corollary

Corollary
Suppose that

• {Xt}t∈Z is a linear process and the assumptions of the auxiliary
lemma are satisfied;

• {εt}t∈Z satisfies the assumptions of the main theorem.

Then

λ−1
1

(
max
1≤j≤q

‖A−1(ωj)Xn(ωj)‖2 − bn
)

d−→ G as n → ∞.

The eigenvalue λ1 and those in the definition of bn are the
eigenvalues of the covariance operator E[ε1 ⊗ ε1].
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Assumption for the FAR(1)

Assumption 2

i) ρ̂ is an estimator of ρ such that |||ρ̂− ρ|||op = op
(
a−1
n
)
as n → ∞,

where log n ≤ an ≤
√
n;

ii) |||ρ|||op < 1;
iii) {εt}t∈Z satisfy the assumptions of the main theorem;
iv) µ = 0.
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Test statistic

Theorem
Suppose that {λ̂j}j≥1 are the eigenvalues of (n− 1)−1∑n

k=2 ε̂k ⊗ ε̂k,
where

ε̂k = Xk − ρ̂ (Xk−1), k = 2, . . . ,n.

Under H0 and Assumption 2, we have that

Tn = λ̂−1
1 max

1≤j≤q
‖(I− e−iωj ρ̂ )Yn(ωj)‖2 − log q+

an∑
j=2

log(1− λ̂j/λ̂1)
d−→ G

as n → ∞.

39/47



Empirical study



Generating functional time series

• The basic building block are the PM10 curves.

• To account for heavy tails, a square-root transformation is
applied.

• A potential weekday effect is removed by centering the data
with corresponding weekday averages.

• The preprocessed data is then transformed to functional data by
a basis function approach of Ramsay, Hooker, and Graves (2009).

• The R package fda and the function Data2fd with 21 Fourier
basis function are used.

• An FAR(1) model Zt = ψ(Zt−1) + εt is fitted to the resulting
functional time series Z1, . . . , Z175.

• The estimator of ψ is a PCA based estimator defined in
Bosq (2000).
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Generating functional time series

Synthetic data is generated in the following way:

i) The residuals êt = Zt − ψ̂(Zt−1) are computed for 2 ≤ t ≤ 175.

ii) The functional time series is generated as Xt = ρ(Xt−1) + εt using
ρ = ψ̂ and ε0, ε1, . . . , εn being an iid bootstrap sample of size n
from ê2, . . . , ê175.

iii) We use X0 = ε0.

This construction assures that we get a functional time series which
is stationary and behaves similarly as the original PM10 data.
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iii) We use X0 = ε0.

This construction assures that we get a functional time series which
is stationary and behaves similarly as the original PM10 data.

41/47



Periodic component

• The periodic component in the simulation study is given by

st(u) = a cos(2πt/d),

where u ∈ [0, 1] and d− 2 is a Poisson distributed random
variable Pλ with λ = 5 or λ = 15.

• For a we investigate the values a = 0, 1, 2, where a = 0
corresponds to H0.
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Empirical rejection rates

a = 0 a = 1 a = 2
α 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

λ = 5 n = 100 0.066 0.029 0.004 0.861 0.799 0.670 1.000 0.999 0.993
n = 200 0.082 0.038 0.006 0.989 0.983 0.970 1.000 1.000 1.000
n = 500 0.093 0.054 0.011 1.000 1.000 0.999 1.000 1.000 1.000

λ = 15 n = 100 0.082 0.041 0.005 0.249 0.165 0.071 0.818 0.758 0.606
n = 200 0.071 0.035 0.006 0.569 0.471 0.293 0.985 0.973 0.922
n = 500 0.096 0.045 0.007 0.990 0.978 0.942 1.000 1.000 1.000
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PM10 time series

• We consider the square-root transformation of the PM10 time
series when the potential weekday effect is removed and when
the potential weekday effect is present.

• Since the test we propose is not requiring knowledge of the
period d, it is expected to have smaller power.

• We plot the values of the test statistic

Tn(j) := ‖(I− e−iωj ρ̂ )Yn(ωj)‖2 − log q+
an∑
j=2

log(1− λ̂j/λ̂1)

for j = 1, . . . ,q = 87.
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PM10 time series the weekday effect removed
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Summary



Concluding remarks

• We propose a general test for hidden periodicities in time series
with values in a separable Hilbert space H.

• The test is based on the maximum of the periodogram.
• We establish that the asymptotic distribution of the
appropriately standardized test statistic is the Gumbel
distribution.

• The results are extended to linear processes.
• Empirical study shows that the test performs well and the
analysis of the PM10 time series illustrates the usefulness of our
approach.

https://www.stat.ucdavis.edu/~vaidas/
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