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Two common problems

I The goodness of fit of a statistical model (testing whether the
errors of the model are independent or uncorrelated).

I The validity of a statistical method (testing whether the data
is a simple random sample).
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Two approaches

I Time domain correlation-based tests;

I Frequency domain periodogram-based tests.
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The Box-Ljung-Pierce approach

I Introduced by Box and Pierce (1970) and Ljung and
Box (1978).

I The idea is to verify that all autocovariances and/or
autocorrelations up to lag h are suitably close to 0.

I Such tests are typically referred to as “portmanteau” tests.
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Generalisations to the multivariate case

Univariate case

I Box and Pierce (1970), Pierce (1972), Ljung and Box (1978).

Multivariate case

I Chitturi (1974, 1976), Hosking (1980), Li and
MacLeod (1981).
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Uncorrelatedness vs independence

I Box and Pierce (1970) and Ljung and Box (1978) proposed
tests work under the assumption of iid errors.

I If the errors are uncorrelated but not independent, the tests
are not reliable (see Romano and Thombs (1996) and Francq,
Roy and Zaköıan (2005)).
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Frequency-domain approach

I Developed by Durlauf (1991), Hong (1996), Deo (2000),
Dette, Kinsvater and Vetter (2010), Shao (2011).

I The idea is to compare the spectral density corresponding to
the sequence of the random variables and the spectral density
of white noise.
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Time-domain tests for functional observations

Gabrys and Kokoszka (2007)

I A portmanteau test of independence and identical distribution
of functional observations.

I Based on the Karhunen–Loéve expansion.

I Need to choose the number of principal components p and
the lag parameter h.

I Extended by Gabrys, Horváth, Kokoszka (2010) to test for
independence in the errors of a functional linear model.
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Time-domain tests for functional observations (2)

Horváth, Hušková, and Rice (2013)

I A test that is based on the sum of the L2 norms of the
empirical correlation functions.

I There is no need to choose the number of principal
components p and the lag parameter h goes to infinity as the
sample size increases.
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Frequency-domain tests for functional observations

Zhang (2016)

I A Cramér-von Mises type test based on the L2 norm of the
functional periodogram function.

I Does not involve the choices of the functional principal
components or the lag truncation number.

I The approach is robust to dependence within white noise.

I The limiting distribution of the test statistic is non-pivotal and
a block bootstrap procedure is needed to obtain the critical
values.
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Our test

I We propose a frequency-domain based test for white noise in
functional time series with a simple asymptotic distribution.

I Our approach does not need bootstrap to obtain the critical
values.

I We do not need to choose the number of functional principal
components or the lag truncation number.

I Our test is a generalisation of the test proposed by Dette,
Kinsvater and Vetter (2010).
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Functional time series

{Xt}t∈Z are strictly stationary L2([0, 1],R)-valued random
elements.

We denote the mean curve by

µ(τ) = EX0(τ)

and the autocovariance kernel at lag t ∈ Z by

rt(τ, σ) = Cov[Xt(τ),X0(σ)]

for τ, σ ∈ [0, 1] provided that E ‖X0‖2
2 <∞.
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The Hilbert-Schmidt operators

Theorem

A bouned linear operator A : L2([0, 1]k ,C)→ L2([0, 1]k ,C) is a
Hilbert-Schmidt operator if and only if there exists a kernel
kA ∈ L2([0, 1]2k ,C) such that

Af (x) =

∫
[0,1]k

kA(x , y)f (y)dy

a.e. in [0, 1]k for each f ∈ L2([0, 1]k ,C).

Weidmann (1980)
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The Hilbert-Schmidt norm

The Hilbert-Schmidt norm of a Hilbert-Schmidt operator
A : L2([0, 1]k ,C)→ L2([0, 1]k ,C) with the kernel kA is given by

|||A|||22 = ‖kA‖2
2 =

∫
[0,1]k

∫
[0,1]k

|kA(x , y)|2 dxdy .
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Spectral density kernel

The spectral density kernel is defined as

fω =
1

2π

∑
t∈Z

exp(−iωt)rt

for ω ∈ R provided that
∑

t∈Z ‖rt‖2 <∞.

If {Xt}t∈Z are uncorrelated, fω = r0/(2π).

This definition was proposed by Panaretos and Tavakoli (2013).
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Spectral density operator

The spectral density operator Fω : L2([0, 1],R)→ L2([0, 1],C) is a
Hilbert-Schmidt operator defined as

Fωf (τ) =

∫ 1

0
fω(τ, σ)f (σ)dσ

for each ω ∈ R, τ ∈ [0, 1] and f ∈ L2([0, 1],R).
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The hypothesis

Let us consider the null hypothesis

H0 : Fω = F a.e.

against the alternative

HA : Fω 6= F on a set of positive Lebesgue measure

for some Hilbert-Schmidt operator F : L2([0, 1],R)→ L2([0, 1],C).
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The distance function

We consider the problem of approximating Fω by a constant
self-adjoint Hilbert-Schmidt operator F (corresponding to a white
noise functional process) by the distance function

M2(F) =

∫ π

−π
|||Fω −F|||22dω.
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The kernel f̃ and the operator F̃

We define the kernel f̃ by setting

f̃ (τ, σ) =
1

2π

∫ π

−π
fω(τ, σ)dω

for each τ, σ ∈ [0, 1]. The kernel f̃ is symmetric, positive definite
and ‖f̃ ‖2 <∞. The operator F̃ is induced by f̃ and is given by

F̃ f (τ) =

∫ 1

0
f̃ (τ, σ)f (σ)dσ

for each τ ∈ [0, 1] and f ∈ L2([0, 1],R).
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The minimum distance

Lemma

Suppose that F : L2([0, 1],R)→ L2([0, 1],C) is a Hilbert-Schmidt
operator. Then

M2(F) =

∫ π

−π
|||Fω −F|||22dω

=

∫ π

−π
|||Fω − F̃|||22dω +

∫ π

−π
|||F̃ − F|||22dω.

In particular, M2(F) is minimized at F̃ .
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The minimum distance in terms of fω

Let us denote m2 = M2(F̃).

Lemma

The minimum distance is given by

m2 =

∫ π

−π
|||Fω − F̃|||22dω

=

∫ 1

0

∫ 1

0

[∫ π

−π
|fω(τ, σ)|2dω − 1

2π

∣∣∣∫ π

−π
fω(τ, σ)dω

∣∣∣2]dτdσ,
where fω is the spectral density kernel.
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Testing for white noise

Since m2 = 0 if {Xt}t∈Z is white noise, we want to test the null
hypothesis

H0 : m2 = 0

against the alternative

HA : m2 > 0.

To perform this test, we need an estimator for the minimum
distance m2.
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fDFT and periodogram

The functional discrete Fourier transform (fDFT) of the
observations {Xt}T−1

t=0 is defined as

X̃ (T )
ω =

1√
2πT

T−1∑
t=0

Xt exp(−iωt)

for ω ∈ R and T ≥ 1.

The periodogram kernel is defined as

p(T )
ω (τ, σ) = [X̃ (T )

ω (τ)][X̃
(T )
ω (σ)]

for each ω ∈ R, τ, σ ∈ [0, 1] and T ≥ 1.
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Riemann sums of periodograms

The periodogram kernel is not a consistent estimator of the
spectral density kernel.

We propose to use the Riemann sums of periodograms. Let us
define

ST ,1(τ, σ) =
1

T

bT/2c∑
k=1

(p(T )
ωk

(τ, σ) + p̄(T )
ωk

(τ, σ))

and

ST ,2(τ, σ) =
2

T

bT/2c∑
k=1

p(T )
ωk

(τ, σ)p̄(T )
ωk−1

(τ, σ),

where ωk = 2πk/T with k = 1, . . . , bT/2c and T ≥ 1.
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Intuition behind the Riemann sums

Using the results of Panaretos and Tavakoli (2013), we obtain

E ST ,1(τ, σ)→ 1

2π

∫ π

−π
fω(τ, σ)dω

and

EST ,2(τ, σ)→ 1

2π

∫ π

−π
|fω(τ, σ)|2dω

a.e. as T →∞.
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Estimator of minimum distance

We have that

m2 =

∫ 1

0

∫ 1

0

[∫ π

−π
|fω(τ, σ)|2dω︸ ︷︷ ︸

≈2π E ST ,2(τ,σ)

− 1

2π

∣∣∣∫ π

−π
fω(τ, σ)dω︸ ︷︷ ︸

≈2π E ST ,1(τ,σ)

∣∣∣2]dτdσ.
Hence, we define the estimator of m2 as

m̂2
T = 2π

∫ 1

0

∫ 1

0
[ST ,2(τ, σ)− |ST ,1(τ, σ)|2]dτdσ

for T ≥ 1.
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Asymptotic distribution of the estimator

Theorem

Suppose that {Xk}k∈Z is a strictly stationary time series with
values in L2([0, 1],R, E ‖X0‖k2 <∞ for each k ≥ 1,

(i)
∑∞

t1,t2,t3=−∞ E[‖Xt1Xt2‖1‖Xt3Xt0‖1] <∞,

(ii)
∑∞

t1,t2,...,tk−1=−∞(1 + |tj |)‖ cum(Xt1 , . . . ,Xtk−1
,X0)‖2 <∞ for

j = 1, 2, . . . , k − 1 and all k ≥ 1.

Then √
T (m̂2

T −m2)
d−→ N(0, v2) as T →∞,

where v2 under the null hypothesis is given by

v2
H = 8π2

[ ∫ 1

0

∫ 1

0
|f0(τ, σ)|2dτdσ

]2

.
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Properties of the estimator

The definition

ST ,2(τ, σ) =
2

T

bT/2c∑
k=1

p(T )
ωk

(τ, σ)p̄(T )
ωk−1

(τ, σ)

with ωk−1 makes the estimator unbiased, but the value of the test
statistic might be complex.
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Properties of the estimator (2)

The test statistic is real with a probability converging to 1 as
T →∞. Hence, our main result might be viewed as

<(
√
T (m̂2

T −m2))
d−→ N(0, v2) as T →∞

and
=(
√
T (m̂2

T −m2))
p−→ 0 as T →∞.
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Rejection rule

We reject the null hypothesis if

<(m̂2
T ) >

v̂H√
T
z1−α,

where z1−α denotes the (1− α)-quantile of the standard normal
distribution and v̂H is an appropriate estimator of vH .
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Estimation of the asymptotic variance

Since

EST ,2(τ, σ)→ 1

2π

∫ π

−π
|fω(τ, σ)|2dω

a.e. as T →∞, a consistent estimator of the asymptotic variance
under the null hypothesis is given by

v̂2
H = 2π

∫ 1

0

∫ 1

0
ST ,2(τ, σ)dτdσ.
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Approximation of the power function

We have that

P
(
<(m̂2

T ) >
v̂H,T√
T

z1−α

)
≈ Φ

(√
T
m2

v
− vH

v
z1−α

)
and this shows that our test is consistent.
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Simulation study

I Simulation setup is similar to that of Zhang (2016).

I The sample size T is chosen to be equal to 128, 256, 512 or
1024.

I The number of the Monte Carlo replications is 1000.

I The data is generated on a grid on 1000 equispaced points in
[0, 1] for each functional observation.

I The kernels ST ,1 and ST ,2 are calculated at 1000× 1000
equispaced points in [0, 1]2.
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Functional time series under the null hypothesis

We simulate iid

I standard Brownian motions;

I Brownian bridges.

We also simulate the FARCH(1) process defined as

Xt(τ) = εt(τ)

√
τ +

∫ 1

0
cψ exp

(
τ2 + σ2

2

)
X 2
t−1(σ)dσ

for t ≥ 1 and τ ∈ [0, 1], where {εt}t∈Z are iid standard Brownian
motions and cψ = 0.3418.
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Empirical rejection probabilities under the null

Brownian motion Brownian bridge FARCH(1)

T 10% 5% 1% 10% 5% 1% 10% 5% 1%

128
9.5 4.8 1.1 10.8 5.3 0.8 11.1 5.7 0.8

(11.0) (4.2) (0.8) (11.0) (5.4) (1.1) (10.7) (5.9 ) (0.9)

256
9.6 5.1 1.3 10.3 5.4 0.9 10.9 5.5 0.7

(10.0) (4.2) (0.9) (9.5) (4.8) (0.7) (11.1) (5.2) (0.9)

512
10.1 5.1 0.8 9.7 5.1 1.0 10.9 5.3 0.8
(9.9) (4.7) (0.6) (10.3) (5.9) (1.3) (11.1) (4.9) (0.7)

1024
9.8 4.9 0.9 9.9 5.2 0.8 10.5 5.2 0.7

(10.0) (4.9) (0.8) (9.9) (5.1) (1.1) (9.8) (4.8) (1.2)

The numbers in brackets give the corresponding results of the test of Zhang (2016)
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Functional time series under the alternative hypothesis

We simulate observations from the FAR(1) model

Xt − µ = ρ(Xt−1 − µ) + εt

for t ≥ 1, where ρ : L2([0, 1],R)→ L2([0, 1],R) is an integral
operator defined by

ρf (τ) =

∫ 1

0
K(τ, σ)f (σ)dσ

for f ∈ L2([0, 1],R) and τ ∈ [0, 1] with some kernel
K ∈ L2([0, 1]2,R) and iid errors {εt}t∈Z.
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Functional time series under the alternative hypothesis

We consider four different FAR(1) models where the errors are
either Brownian motions or Brownian bridges and the kernel of the
integral operator is either the Gaussian kernel

KG (τ, σ) = cG exp

(
τ2 + σ2

2

)
or the Wiener kernel

KW (τ, σ) = cW min(τ, σ),

where the constants cG and cW are chosen such that the
correspoding Hilbert-Schmidt norm is equal to 0.3.

P. Bagchi, V. Characiejus, H. Dette Testing for white noise in functional time series



Motivation and background
Our test for white noise

Finite sample performance
Conclusions and future work

Monte Carlo simulation
Performance under the null hypothesis
Performance under the alternative hypothesis

Empirical rejection probabilities under the alternative

εt Brownian motion

K Gaussian Wiener

T 10% 5% 1% 10% 5% 1%

128
82.6 80.7 65.9 87.6 82.4 66.9

(86.1) (83.7) (58.5) (89.9) (83.1) (59.7)

256
99.0 98.2 98.2 99.4 98.3 94.2

(99.6) (99.2) (99.0) (99.9) (99.5) (98.6)

512
99.8 99.6 99.6 99.9 99.9 99.6

(99.7) (99.5) (99.0) (99.9) (99.8) (99.1)

1024
100.0 99.9 99.7 100.0 100.0 99.8

(100.0 ) (100.0) (99.8 ) (100.0) (99.8) (99.5)

The numbers in brackets give the corresponding results of the test of Zhang (2016)
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Empirical rejection probabilities under the alternative

εt Brownian bridge

K Gaussian Wiener

T 10% 5% 1% 10% 5% 1%

128
80.1 77.4 60.1 87.6 79.9 61.2

(79.2) (68.3) (54.4) (80.2) (65.8) (58.1)

256
100.0 97.0 95.5 99.9 98.3 98.1

(100.0) (98.2) (97.2) (100.0) (99.1) (98.8)

512
100.0 99.3 99.3 100.0 100.0 98.8

(100.0 ) (98.7) (98.1) (100.0) (100.0) (99.1)

1024
100.0 100.0 100.0 100.0 100.0 100.0

(100.0) (100.0) (99.4) (100.0) (100.0) (100.0)

The numbers in brackets give the corresponding results of the test of Zhang (2016)
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Concluding remarks

I We propose a frequency-domain based test for white noise
(uncorrelatedness) in functional time series with a simple
asymptotic distribution.

I Our test does not require a choice of the lag truncation
number or the number of functional principal components.

I Critical values of the test statistic can be easily obtained,
there is no need for bootstrap.

I The finite sample performance in testing for white noise is
very similar to that of Zhang (2016).
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Future work

I Adapt the test for the situation when we do not observe the
random elements directly but we only have residuals,
i.e. adapt the test for model diagnostic checking.

I Establish the asymptotic distribution of the test statistic
under simpler and weaker assumptions.
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