
DM510 - Operating Systems, Weekly Notes, Week 11, 2018

Lecture

� In the lecture on March 2nd we will �nish ythe discussion on Chapter 3. Examples will

be shown for implementation and usage of ordinary pipes and named pipes. Examples

will be shown for implementation and usage of socket programming.

� We will start with Chapter 4 (Multithreaded Programming). Next week we will start

with Chapter 5 (Process Scheduling).

� For Chapters 3 and 4 examples were be shown illustrating the di�erence of fork, vfork,

and clone on Linux systems.

� For Chapters 3 and 4 axamples will be shown of how to implement signal handlers.

Examples will be shown of how to use OpenMP and pthreads.

� Note, that you �nd even more exercises including solutions here :

http://codex.cs.yale.edu/avi/os-book/OS9/practice-exer-dir/index.html

� Prepare for the Tutorial Session in week 10, 2018.:

All exercises not discussed so far. In addition:

4.1 Provide two programming examples in which multithreading does not provide better

performance than a single-threaded Solution.

4.2 Under what circumstances does a multithreaded solution using multiple kernel threads

provide better performance than a single-threaded solution on a single-processor sys-

tem?

4.3 Which of the following components of program state are shared across threads in a

multithreaded process?

� Register values

� Heap memory

� Global variables

� Stack memory

4.4 Can a multithreaded solution using multiple user-level threads achieve better per-

formance on a multiprocessor system than on a single processor system? Explain.

4.5 In Chapter 3, we discussed Google's Chrome browser and its practice of opening each

new website in a separate process. Would the same bene�ts have been achieved if

instead Chrome had been designed to open each new website in a separate thread?

Explain.

4.6 Is it possible to have concurrency but not parallelism? Explain.

4.7 Using Amdahl's Law, calculate the speedup gain of an application that has a 60

percent parallel component for (a) two processing cores and (b) four processing

cores.

http://codex.cs.yale.edu/avi/os-book/OS9/practice-exer-dir/index.html

DM510 - Operating Systems, Weekly Notes, Week 11, 2018

4.9 A system with two dual-core processors has four processors available for schedul-

ing. A CPU-intensive application is running on this system. All input is performed

at program start-up, when a single �le must be opened. Similarly, all output is

performed just before the program terminates, when the program results must be

written to a single �le. Between startup and termination, the program is entirely

CPU-bound. Your task is to improve the performance of this application by multi-

threading it. The application runs on a system that uses the one-to-one threading

model (each user thread maps to a kernel thread).

� How many threads will you create to perform the input and output? Explain.

� How many threads will you create for the CPU-intensive portion of the applica-

tion? Explain.

4.10 Consider the following code segment:

pid_t pid;

pid = fork();

if (pid == 0) { /* child process */

fork();

thread_create(. . .);

}

fork();

How many unique processes are created? How many unique threads are created?

4.11 As described in Section 4.7.2, Linux does not distinguish between processes and

threads. Instead, Linux treats both in the same way, allowing a task to be more akin

to a process or a thread depending on the set of ags passed to the clone() system

call. However, many operating systems, such as Windows XP and Solaris, treat

processes and threads di�erently. Typically, such systems use a notation wherein

the data structure for a process contains pointers to the separate threads belonging

to the process. Contrast these two approaches for modeling processes and threads

within the kernel.

4.13 Consider a multiprocessor system and a multithreaded program written using the

many-to-many threading model. Let the number of user-level threads in the program

be more than the number of processors in the system. Discuss the performance

implications of the following scenarios.

� The number of kernel threads allocated to the program is less than the number

of processors.

� The number of kernel threads allocated to the program is equal to the number

of processors.

� The number of kernel threads allocated to the program is greater than the num-

ber of processors but less than the number of user-level threads.

4.14 Pthreads provides an API for managing thread cancellation. The pthread_setcancelstate()

function is used to set the cancellation state. Its prototype appears as follows:

DM510 - Operating Systems, Weekly Notes, Week 11, 2018

pthread_setcancelstate(int state, int *oldstate) The two possible values for

the state are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE. Using the code

segment shown in Figure below, provide examples of two operations that would be

suitable to perform between the calls to disable and enable thread cancellation.

int oldstate;

pthread setcancelstate(PTHREAD CANCEL DISABLE, &oldstate);

/* What operations would be performed here? */

pthread setcancelstate(PTHREAD CANCEL ENABLE, &oldstate);

4.17 The program shown in Figure below uses the Pthreads API . What would be the

output from the program at LINE C and LINE P ?

#include <pthread.h>

#include <stdio.h>

#include <types.h>

int value = 0;

void *runner(void *param); /* the thread */

int main(int argc, char *argv[]) {

pid t pid;

pthread t tid;

pthread attr t attr;

pid = fork();

if (pid == 0) { /* child process */

pthread attr init(&attr);

pthread create(&tid,&attr,runner,NULL);

pthread join(tid,NULL);

printf("CHILD: value = %d",value); /* LINE C */

}

else if (pid > 0) { /* parent process */

wait(NULL);

printf("PARENT: value = %d",value); /* LINE P */

}

void *runner(void *param) {

value = 5;

pthread exit(0);

}

