
Exercises for Week 46
Parallel Computing, DM818 (Fall 2017)

Department of Mathematics and Computer Science
University of Southern Denmark
Daniel Merkle

Exercise 1 Task Graphs

For the task graphs given above, determine the following:

a) Maximum degree of concurrency.

b) Critical path length.

c) Maximum achievable speedup over one process assuming that an arbitrarily large number of processes is available.

d) The minimum number of processes needed to obtain the maximum possible speedup.

e) The maximum achievable speedup if the number of processes is limited to (a) 2, (b) 4, and (c) 8.

Exercise 2 Task Graphs

Let d be the maximum degree of concurrency in a task-dependency graph with t tasks and a critical-path length l. Prove
that d tl e ≤ d ≤ t− l + 1.

Exercise 3 Routing

Consider the routing of messages in a parallel computer that uses store-and-forward routing. In such a network, the cost
of sending a single message of size m from Psource to Pdestination via a path of length d is ts + tw × d×m. An alternate
way of sending a message of size m is as follows. The user breaks the message into k parts each of size m/k, and then
sends these k distinct messages one by one from Psource to Pdestination. For this new method, derive the expression for
the time to transfer a message of size m to a node d hops away under the following two cases:

a) Assume that another message can be sent from Psource as soon as the previous message has reached the next node
in the path.

b) Assume that another message can be sent from Psource only after the previous message has reached Pdestination.

For each case, comment on the value of this expression as the value of k varies between 1 and m. Also, what is the optimal
value of k if ts is very large, or if ts = 0?

Exercise 4 Task Dependency Graph

A =

r rr rr rr r r rr r
B =

rr r rr r
r rr

Given are the two sparse matrices A and B. Consider the problem of sparse matrix-matrix multiplication. A dot
corresponds to a non-zero entry. The computation is decomposed into 8 tasks. Let task i the owner of row A[i, ∗] and of
row B[i, ∗]. Task i has to compute row i of the result C = A ·B.

a) Draw the task interaction graph using directed edges. Draw an edge from task Ti to task Tj , if Ti requires data from
Tj .

b) Suppose that task i owns column i of matrix B instead of row i for the computation. Draw the task-interaction
graph for this case.

Exercise 5 LU factorization

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

 →

L1,1 0 0
L2,1 L2,2 0
L3,1 L3,2 L3,3

.

U1,1 U1,2 U1,3
0 U2,2 U2,3
0 0 U3,3

1: A1,1 → L1,1U1,1 6: A2,2 = A2,2 − L2,1U1,2 11: L3,2 = A3,2U−1
2,2

2: L2,1 = A2,1U−1
1,1 7: A3,2 = A3,2 − L3,1U1,2 12: U2,3 = L−1

2,2 A2,3

3: L3,1 = A3,1U−1
1,1 8: A2,3 = A2,3 − L2,1U1,3 13: A3,3 = A3,3 − L3,2U2,3

4: U1,2 = L−1
1,1 A1,2 9: A3,3 = A3,3 − L3,1U1,3 14: A3,3 → L3,3U3,3

5: U1,3 = L−1
1,1 A1,3 10: A2,2 → L2,2U2,2

Given is the decomposition of the LU factorization into 14 tasks. (We assume that each of the 14 tasks requires the same
unit amount of work).

a) Draw the task dependency graph.

b) Determine all critical paths.

c) Determine the average and the maximal degree of concurrency.

d) Describe/draw an efficient mapping of the task-dependency graph of the decomposition onto three processes.

e) Describe/draw an efficient mapping of the task-dependency graph of the decomposition onto four processes.

f) Which of the both mappings solves the problem faster?

g) What is the maximal speedup that can be achieved and how many processes are necessary for that speedup? (to be
discussed next quarter)

h) What is the maximal efficiency, that can be achieved, if p > 1 processes are used? Describe/draw the mapping that
you used. (to be discussed next quarter)

Exercise 6 Task Dependency Graph

Given is the following task dependency graph:

1

2 2

3 3 3

n n n n n n

n−1n−1n−1n−1

...

...

...

a) Determine the maximal degree of concurrency.

b) What is the length of the critical path?

c) Determine the average degree of concurrency.

Exercise 7 Circular q-shift

Show that in a p-node hypercube, all the p data paths in a circular q-shift are congestion-free if E-cube routing (Section
4.5 of the course book) is used.

Hint: (1) If q > p/2, then a q-shift is isomorphic to a (p − q)-shift on a p-node hypercube. (2) Prove by induction on
hypercube dimension. If all paths are congestion-free for a q-shift (1 ≤ q < p) on a p-node hypercube, then all these paths
are congestion-free on a 2p-node hypercube also.

Exercise 8 Circular q-shift

Show that the length of the longest path of any message in a circular qshift on a p-node hypercube is log p− γ(q), where
γ(q) is the highest integer j such that q is divisible by 2j .

Hint: (1) If q = p/2, then γ(q) = log p− 1 on a p-node hypercube. (2) Prove by induction on hypercube dimension. For a
given q, γ(q) increases by one each time the number of nodes is doubled.

