
Parallel Computing

Daniel Merkle

Course Introduction
Communication media:

http://www.imada.shu.dk/~daniel/parallel
Personal Mail: daniel@imada.sdu.dk

Schedule:
Tuesday 8.00 ct, Thursday 12.00 ct (if necessary)
2 quarters

Evaluation:
Project assignments (min. 3 per quarter)
Theoretical + programming exercises

Oral Exam

…course may change to a reading course

Course Introduction
Literature:

main course book:
Grama, Gupta, Karypis, and Kumar :
Introduction to Parallel Computing
(Second Edition, 2003)

other sources will be announced

Weekly notes

Parallel Computing – Course Overview

PART I: BASIC CONCEPTS

PART II: PARALLEL PROGRAMMING

PART III: PARALLEL ALGORITHMS AND
APPLICATIONS

Outline
PART I: BASIC CONCEPTS

Introduction
Parallel Programming Platforms
Principles of Parallel Algorithm Design
Basic Communication Operations
Analytical Modeling of Parallel Programs

PART II: PARALLEL PROGRAMMING
Programming Shared Address Space Platforms

Programming Message Passing Platforms

Outline
PART III: PARALLEL ALGORITHMS AND APPLICATIONS

Dense Matrix Algorithms
Sorting
Graph Algorithms
Discrete Optimization Problems
Dynamic Programming
Fast Fourier Transform

maybe also: Algorithms from Bioinformatics

Example: Discrete Optimization Problems

The 8-puzzle problem

Discrete Optimization – sequential
Depth-First-Search, 3 steps:

Discrete Optimization – sequential
Best-First-Search:

Discrete Optimization - parallel
Depth First Search - parallel:

load balancing

Discrete Optimization - parallel
Dynamic Load Balancing

Generic Scheme: Load Balancing Schemes:
e.g. Round-Robin,
Random Polling

Scalability analysis
Experimental results
Speedup anomalies

Discrete Optimization
Analytical vs. Experimental Results

Number of work requests
(analytically derived expected values and experimental results):

Introduction

Introduction

Motivating Parallelism
Multiprocessor / Multicore architectures get more and more
usual
Data intensive applications: web server / databases / data
mining
Computing intensive applications: for example realistic
rendering (computer graphics), simulations in life sciences:
protein folding, molecular docking, quantum chemical
methods, …
Systems with high availability requirements: Parallel
Computing for redundancy

General-purpose computing on
graphics processing units
From http://www.acmqueue.org 04/08

Motivating Parallelism
Why Parallel Computing with the rate of development
of microprocessors in mind?

Trend: Uniprocessor architectures are not able to sustain the
rate of realizable performance. Reasons are the for example
lack of implicit parallelism or the bottleneck to the memory.

Standardized hardware interfaces have reduced time to build
a parallel machine based on a microprocessor.

Standardized programming environments for parallel
computing (for example MPI/OpenMP or CUDA)

Computational Power Argument –
Many transistors = many useful OPS ?

„The complexity for minimum component costs has increased at a rate
of roughly a factor of two a year. Certainly over short term this rate can
be expected to continue, if not increase. Over the long term, the rate of
increase is a bit more uncertain, although there is no reason to believe
it will remain not constant for at least 10 years. That means by 1975,
the number of components per integrated circuit for minimum cost will
be 65000.“ (Moore, 1965)

1975: 16K CCD memory with approx. 65000 transistors
Moore‘s Law (1975): The complexity for minimum component
costs doubles every 18 months
Does this reflect a similar increase in practical computing power?
No! Due to missing implicit parallelism and the unparallelised
nature of most applications.

Parallel
Computing

Memory Speed Argument
Clock rates: approx. 40% increase per year
DRAM access times: approx. 10% increase per year
Furthermore, #instructions executed per clock cycle increases

performance bottleneck
reduction of the bottleneck: hierarchical memory organization,
aiming at many “fast” memory requests satisfied by caches
(high cache hit rate)

Parallel Platforms:
Larger aggregate caches
Higher aggregate bandwidth to the memory
Parallel algorithms are cache friendly due to data locality

Data Communication Argument

Wide area distributed
platforms:
e.g. Seti@Home,
factorization of large
integers, Folding@Home, …

Constraints on the location
of data (e.g. mining of large
commercial datasets
distributed over a relatively
low bandwidth network)

IBM Roadrunner
Currently (Aug. 2008) the world's fastest computer

First machine with >1.0
Petaflop performance

No. 1 on the TOP500
since 06/2008

IBM Roadrunner
Technical Specification:

Roadrunner uses a hybrid design with 12,960 IBM PowerXCell
8i CPUs and 6,480 AMD Opteron dual-core processors in
specially designed server blades connected by Infiniband

IBM Roadrunner
Technical Specification:

6,480 Opteron processors with 51.8 TiB RAM (in 3,240 LS21 blades)
12,960 Cell processors with 51.8 TiB RAM (in 6,480 QS22 blades)
216 System x3755 I/O nodes
26 288-port ISR2012 Infiniband 4x DDR switches
296 racks

2.35 MW power

IBM Roadrunner

Dr. Don Grice, chief engineer of the
Roadrunner project at IBM, shows off the
layout for the supercomputer, which has
296 IBM Blade Center H racks and takes up
6,000 square feet.

(source: http://www.computerworld.com)

280 TFlops/s : BlueGene/L

BlueGene/L

BlueGene/L – System Architecture

