Introduction to

Parallel Computing

George Karypis
Graph Algorithms

S
Outline

m Graph Theory Background

m Minimum Spanning Tree
Prim’s algorithm

m Single-Source Shortest Path
Dijkstra’s algorithm

m All-Pairs Shortest Path

Dijkstra’s algorithm
Floyd's algorithm

m Maximal Independent Set
Luby’s algorithm

"
Background

01 000
1 01 0 1
o o A= 10 1 0 0 1
00 0 01
‘ o1 1 1 0

Figure 10.2 An undirected graph and its adjacency matrix representation.

0 nE=B%
AERNERDERAY

(a) (b)

Q—O
Figure 10.1 (a) An undirected graph and (b) a directed graph. ‘ B B o B

(3
SN P E S e 1%

| I

Figure 10.3 An undirected graph and its adjacency list representation.

" I
Minimum Spanning Tree

m Compute the minimum weight spanning
tree of an undirected graph.

Figure 10.4 An undirected graph and its minimum spanning tree.

a b ¢ d e f

dl] [1]o]s [1 Joo]od]

Prim’s Algorithm =~

a |01 3 ocoo 3

b1 0 5 1 o0

c |3 50 2 1 x

. y . dloc 1 2 0 4

m Prim’s Algorithm elettos
f 12 00 00 00

©(n?) serial complexity for dense Y

graphs. © graes O~ ~ 4 [(EELLE

. Why? o a 3 cooo 3

. . 5 b i o0 o0

m How can we parallelize this O clasoas
N i

algorithm?

- WhiCh Steps Can be done in (c) After the second edge
pa ral Iel? has been selected

a [0 1 3 coox 3
b1 0 5 1 oo
I c |3 50 2 1
1 procedure PRIM_MST(V, E, w,r) dleoc 1 2 0 4 o
2 begin elooc 1 405
3 Vioi={r): f|2 0o 5 0
4 dlr]:=0;
5. forallve (V—Vr)do
6. if edge (r, v) exists set d[v] := w(r, v); T T— a b cdef
7 else set d[v] := oo; spanning tree df [1fof2 [1]1]s]
8 while V'y # 1V do
. a |0 1 3 oooo 3
9. begin _ ' 511 05 1 000
10. find a vertex u such that d[u] := min{d[v]|v € (V — Vp)}; bl 3507 e
11. Vp = Vg Udul; dlooc 1 2 0 4
12. forallv e (V —Vy) do ¢ foooc 1 405
13. dlv] := min{d[v]. w(, v)}; I8 R C R R R
14. endwhile
15. end PRIM_MST

" I
Parallel Formulation of Prim’s
Algorithm

m Parallelize the inner-most loop
of the algorithm.

Parallelize the selection of the 2 b ST
“minimum weight edge” connecting |; ="
an edge In VT to a Vertex In V-VT' (53 for?i]leg(’i ((J{.,;e!:i:tg:etdli:] = w(r, v);
Parallelize the updating of the d[] © e e
array ?O begflil;ld a vertex u such that d[u] := min{d[v]|v € (V — Vp)):
. . 11. Vi = Vy Ufu);
m \What is the maximum s e
13. d|v] := mn{d|v], w(u, v)};
concurrency that such an 4. endwhil
15. end PRIM_MST
approach can use?

m How do we “implement” it on a
distributed-memory
architecture?

« B
Parallel Formulation of Prim’s

Algorithm

1. procedure PRIM_MST(V, £, w, r)
2. begin
m Decompose the graph A (adjacency % ;m}{o}”_”d
matrix) and vector d vector using a 1D ° it edge (v exiss st dlu] = i, v
block partitioning along columns. S ey AT do
Why columns? o nd vertex such hat = minfdoll € (V= V)
m Assign each block of size n/fptoone of |5 i Ziniel v o
the processors. 15, cnd PRIM.MST

m How will lines 10 & 12—13 be =
p
performed? d[lf?] ,,,,,,,,,,,, (a}
m Complexity?
computation iii iii Eii Eii (
~— " communication i o o
n? —_— L[| e T it
7. — y A EEREEN 1 1 n (b)
/P— O — +(")(f?10g[)) Pl N N
P i i i
Isoefficiency: ©(p? log” p) i Il i JL
Processors 0 1 i p-1

Single-Source Shortest Path

Given a source vertex s
find the shortest-paths to
all other vertices.

Dijkstra’s algorithm.

How can it be
parallelized for dense
graphs?

0N LR~

— e e e WO
= or

procedure DIJKSTRA_SINGLE_SOURCE_SP(V. £, w. s)
begin
Vi = {s}:
forallv e (V- TVy)do
if (s, v) exists set /[v] := w(s, v);
else set /[v] := o0;
while I'T £ V do
begin
find a vertex # such that /[u] := min{/[v]|v € (V — V7)};
Vy = Vy Ulul;
forallve (V —TVyr)do
I[v] := mun{/[v]. /[u] + w(u, v)};
endwhile
end DIJKSTRA_SINGLE_SOURCE_SP

Algorithm 10.2 Dijkstra’s sequential single-source shortest paths algorithm.

All-pairs Shortest Paths

m Compute the shortest paths between all
pairs of vertices.

m Algorithms

Dijkstra’s algorithm

m Execute the single-source algorithm n times.
Floyd's algorithm

m Based on dynamic programming.

JE—
All-Pairs Shortest Path

Dijkstra’s Algorithm

m Source-partitioned formulation
Partition the sources along the different
processors.

m Is it a good algorithm?
Computational & memory scalability

What is the maximum number of processors
that it can use?

m Source-parallel formulation
Used when p > n.

Processors are partitioned into n groups
each having p/n processors.

Each group is responsible for one single-
source SP computation.

Complexity?

Tp = ®(n?).

O,

computation
. communication

) n° e e
I'p= 0 (—) + ®O(nlogp).
p

A((plog p)1).

" I
Floyd’s Algorithm

m Solves the problem using a
dynamic programming algorithm.
Let d),; be the shortest path distance
between vertices i and] that goes

only through vertices 1,..., k.

1 procedure FLOYD_ALL_PAIRS_SP(A4)
2 begin
3 DY = 4;
d(,{) w(v;, U!) if k=0 4 for k :=1ton do
mm[d” D d(’J D -|-(,{(’I “} if k=1 5 fori:=1tondo
6 for j :=1tondo
7 d{.(_'r‘;.' ‘= min (d;_”"j_“, d;ﬁ,—“ + d;_;_"]._“);
8 end FLOYD_ALL_PAIRS_SP

Complexity: ©(n3).
Note: The algorithm can run in-place.
m How can we parallelize it?

Parallel Formulation of Floyd’s

Algorithm

Distribute the matrix using a 2D block

decomposition.

Parallelize the double inner-most loop.

procedure FLOYD_ALL_PAIRS_SP(A4)
begin
DO = 4;

fork:=1ton do
fori:=1ton do
for j == 1 ton do

end FLOYD_ALL_PAIRS_SP

JP

Figure 10.7 (a) Matrix D'® distributed by 2-D block mapping into ./ x /7> subblocks, and (b)

n

VP

(LD(LY

(a)

the subblock of »)®) assigned to process 7. ;.

i —1).1, P
E=DalG =l

n

S+

N

LT
Vi

(b)

T -

)

VP

k) . k=1 k=1) | Sk=D).
d;‘._;‘ ‘= min (df'-.f i +”‘A—,;)

Communication pattern?

Complexity?
computation communication
e . — —

meol™) 1o
p= O — 9| —logp|.
P JP

O(p!log® p).

k column

k column

k TOW

Figure 10.8 (a) Communication patterns used in the 2-D block mapping. When computing d,“;
information must be sent to the highlighted process from two other processes along the same row
and column. (b) The row and column of /7 processes that contain the ™ row and column send

them along process columns and rows.

| 4>
w-n | L T |
dk.r I Y H H
............ 1 ririrle
......................... ? I | ! | I
o VT Vool
il e
(k—1) ol .
T v ||
............. il b o O B
(a) (b)

procedure FLOYD_2DBLOCK(D®)
begin
for k :=1ton do
begin
each process P ; that has a segment of the k" row of D*=1;
broadcasts 1t to the P, ; processes;
each process I; ; that has a segment of the k™ column of D'
broadcasts it to the P; , processes;
each process waits to receive the needed segments;
each process I’ ; computes its part of the D™ matrix;
end
0. end FLOYD_2DBLOCK

h &~ W N —

o

k—1).

= 2N

Algorithm 10.4 Floyd's parallel formulation using the 2-D block mapping. P, ; denotes all the
processes in the ™ column, and P; .. denotes all the processes in the i row. The matrix D© is
the adjacency matrix.

Comparison of All-Pairs SP

Algorithms

Table 10.1 The performance and scalability of the all-pairs shortest paths algorithms on various
architectures with O (p) bisection bandwidth. Similar run times apply to all ¥ — d cube architectures,

provided that processes are properly mapped to the underlying processors.

Maximum Number

of Processes Corresponding Isoefficiency
for £ = O(1) Parallel Run Time Function
Dijkstra source-partitioned ®(») O (n?) O (p3)
Dijkstra source-parallel O(n?/ logn) ®(nlogn) O((plog p)l's)
Floyd 1-D block O (n/logn) O (n? logn) O(p logp)3)
Floyd 2-D block @ (n?/log® n) O (nlog® n) O(p'21og’ p)
Floyd pipelined 2-D block O (n?) ®(n) @(pl'S)

" B
Maximal Independent Sets

m Find the maximal set of vertices that are
not adjacent to each other.

(f)
AR
__(eY
Y ~ U {a, d, 1, h} 1s an independent set
| [A8
"l‘ /a\, | {a, ¢,], f, g} 1s a maximal independent set
IR i "‘ : : :
(b ~ e) / p {a, d, h, f} is a maximal independent set
- P / (1)
e \ / J ./
- \
7 \ o/
1\(\(\ /
I‘\C/}7_7_17_7_""”"-*-7.‘/1<1 '\
B 2/

Figure 10.15 Examples of independent and maximal independent sets.

"
Serial Algorithms for MIS

Practical MIS algorithms are incremental in
nature.
Start with an empty set.
Add the vertex with the smallest degree.
Remove adjacent vertices
Repeat 1—2 until the graph becomes empty.

These algorithms are impossible to parallelize.
Why?

Parallel MIS algorithms are based on the ideas
initially introduced by Luby.

S
Luby’s MIS Algorithm

m Randomized algorithm.

Starts with an empty set.
Assigns random numbers to each vertex.

Vertices whose random number are smaller
than all of the numbers assigned to their
adjacent vertices are included in the MIS.

Vertices adjacent to the newly inserted
vertices are removed.

Repeat steps 1—3 until the graph becomes
empty.

m This algorithms will terminate in O(log (n))

iterations.

m Why is this a good algorithm to parallelize?
m How will the parallel formulation proceed?

Shared memory
Distributed memory

1 (7 11 —~
N 115)
3 v X . Vertex in the independent set
- 13 4 (10— 8
.2.ol ;
5 ,'6-) _ /) Vertex adjacent to a vertex
A)) in the independent set
(9F Py
15 \14) 12
(a) After the 1st random numt 1
O : e (O —®
\ :
/-. S '\. I ' \ g d g . jl.. T rd '... \\.‘.. _— d ’
(o) (1) e) () I

(b) After the 2nd random number assignment (c) Final maximal independent set

Figure 10.16 The different augmentation steps of Luby’s randomized maximal independent set
algorithm. The numbers inside each vertex correspond to the random number assigned to the vertex.

