
Introduction to
Parallel Computing

George Karypis
Search Algorithms for Discrete
Optimization Problems

Overview
What is a Discrete Optimization Problem
Sequential Solution Approaches
Parallel Solution Approaches
Challenges

Discrete Optimization Problems
A discrete optimization problem (DOP) is defined
as a tuple of (S, f)

S : The set of feasible states
f : A cost function f : S -> R

The objective is to find the optimal solution xopt in
S such that f(xopt) is maximum over all solutions.
Examples:

0/1 integer linear programming problem
8-puzzle problem

Examples
0/1 Linear integer problem:

Given an mxn matrix A, vectors b
and c, find vector x such that

x contains only 0s and 1s
Ax > b
f(x) = xTc is maximized.

8-puzzle problem:
Given an initial configuration of an
8-puzzle find the shortest
sequence of moves that will lead
to the final configuration.

DOP & Graph Search
Many DOP can be formulated as finding the a
minimum cost path in a graph.

Nodes in the graph correspond to states.
States are classified as either

terminal & non-terminal

Some of the states correspond to feasible solutions
whereas others do not.
Edges correspond to “costs” associated with moving
from one state to the other.

These graphs are called state-space graphs.

Examples of State-Space Graphs

15-puzzle problem:

Examples of State-Space Graphs

0/1 Linear integer programming problem
States correspond to partial assignment of values to
components of the x vector.

Exploring the State-Space Search
The solution is discovered by exploring the state-space
search.

Exponentially large
Heuristic estimates of the solution cost are used.

Cost of reaching to a feasible solution from current state x is
l(x) = g(x) + h(x)

Admissible heuristics are the heuristics that correspond
to lower bounds on the actual cost.

Manhattan distance is an admissible heuristic for the 8-puzzle
problem.

Idea is to explore the state-space graph using heuristic
cost estimates to guide the search.

Do not spend any time exploring “bad” or “unpromising” states.

Exploration Strategies
Depth-First

Simple & Ordered Backtracking
Depth-First Branch-and-Bound

Partial solutions that are inferior to the
current best solutions are discarded.

Iterative Deepening A*
Tree is expanded up to certain depth.
If no feasible solution is found, the
depth is increased and the entire
process is repeated.

Memory complexity linear on the depth
of the tree.
Suitable primarily for state-graphs that
are trees.

Exploration Strategies
Best-First Search

OPEN/CLOSED lists
A* algorithm

Heuristic estimate is used
to order the nodes in the
open list.

Large memory
complexity.

Proportional to the number
of states visited.

Suitable for state-space
graphs that are either
trees or graphs.

Trees vs Graphs
Exploring a graph as
if it was a tree.

Can be a problem…

Parallel Depth-First Challenges
Computation is dynamic and
unstructured

Why dynamic?
Why unstructured?

Decomposition approaches?
Do we do the same work as the
sequential algorithm?

Mapping approaches?
How do we ensure load balance?

Overall load-balancing strategy

Some more details
Load balancing strategies

Which processor should I ask for work?
Global round-robin
Asynchronous (local) round-robin
Random

Work splitting strategies
Which states from my stack should I give
away?

top/bottom/one/many

Analysis
How can we analyze these algorithms?
Focus on worst-case complexity.
Assumptions/Definitions:

a-splitting:
A work transfer request between two processors results in
each processor having at least aW work for 0<a<=5 and W
the original work available to one processor.

V(p) the number of work-transfer requests that are
required to ensure that each processor has been
requested for work at least once.

Then…

Analysis
Different load balancing schemes have
different V(p)

Global round-robin: V(p)=O(p).
Asynchronous round-robin: V(p) = O(p2)
Random: V(p) = O(plog(p))

Termination Detection
How do we know that
the total work has
finished?

Dijkstra’s algorithm
Tree-based termination

Parallel Best-First Challenges
Who maintains the Open & Closed lists
How do you search a graph?

Open/Closed List Maintenance
Centralized scheme

contention

Distributed scheme
non-essential computations.

periodic information
exchange.

Searching graphs
Associate a processor with each individual
node

Every time a node is generated is sent to this
processor to check if it has been generated
before.

Random hash-function that ensures load
balancing.

High communication cost.

Speedup Anomalies

