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Overview

m \WWhat is a Discrete Optimization Problem
m Sequential Solution Approaches

m Parallel Solution Approaches

m Challenges



=
Discrete Optimization Problems

m A discrete optimization problem (DOP) is defined
as a tuple of (S, f)
S : The set of feasible states
f: Acostfunction f:S->R

m The objective Is to find the optimal solution X, In
S such that f(X,,) Is maximum over all solutions.

m Examples:
0/1 integer linear programming problem
8-puzzle problem




=
Examples

m O/1 Linear integer problem:

Given an mxn matrix A, vectors b
and c, find vector x such that

m X contains only Os and 1s

m AX>Db

s f(X) = x"c is maximized.

m 8-puzzle problem:

Given an initial configuration of an
8-puzzle find the shortest
sequence of moves that will lead
to the final configuration.
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=
DOP & Graph Search

m Many DOP can be formulated as finding the a
minimum cost path in a graph.
Nodes in the graph correspond to states.

States are classified as either
m terminal & non-terminal

Some of the states correspond to feasible solutions
whereas others do not.

Edges correspond to “costs” associated with moving
from one state to the other.

m These graphs are called state-space graphs.



Examples of State-Space Graphs

m 15-puzzle problem:
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Examples of State-Space Graphs

m O/1 Linear integer programming problem

States correspond to partial assignment of values to
components of the x vector.

Example 11.3  The 0/1 integer-linear-programming problem revisited O Terminal node (non-goal)

Consider an instance of the 0/1 integer-linear-programming problem defined in Ex-
ample 11.1. Let the values of A4, b, and ¢ be given by

5 2 1 2 8 -
A= I =1 =1 2 {.b=]2|].¢c=
3 ! 13 5

The constraints corresponding to 4, b, and ¢ are as follows:

O Non-terminal node

Terminal node (goal)

S+ 2+ +2vyy = 8
X —Xx2—x3+2xy = 2
3vi+x2+v3i+3y = 5

and the function f'(x) to be minimized is

filx) =2x; +x2 — x5 — 2x4. X3 = \ X3 = 1 x}

Z max{Ali, j]. 0} + Z Ali.jlx; = b i=1...., m

x;is free xis fixed S(x)=0 Sx)y=2

Figure 11.2  The graph corresponding to the 0/1 integer-linear-programming problem.




Exploring the State-Space Search

The solution is discovered by exploring the state-space
search.

Exponentially large

m Heuristic estimates of the solution cost are used.
Cost of reaching to a feasible solution from current state x is

" 1(x) = g(x) + h(x)
Admissible heuristics are the heuristics that correspond
to lower bounds on the actual cost.

Manhattan distance is an admissible heuristic for the 8-puzzle
problem.

ldea is to explore the state-space graph using heuristic
cost estimates to guide the search.

Do not spend any time exploring “bad” or “unpromising” states.



Exploration Strategies

m Depth-First
Simple & Ordered Backtracking

Depth-First Branch-and-Bound

m Partial solutions that are inferior to the
current best solutions are discarded.

lterative Deepening A*
m Tree is expanded up to certain depth.

m |f no feasible solution is found, the
depth is increased and the entire
process is repeated.

Memory complexity linear on the depth
of the tree.

Suitable primarily for state-graphs that
are trees.
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Exploration Strategies

m Best-First Search
OPEN/CLOSED lists
A* algorithm
m Heuristic estimate is used
to order the nodes in the
open list.
Large memory
complexity.
= Proportional to the number
of states visited.
Suitable for state-space
graphs that are either
trees or graphs.
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Figure 11.6  Applying best-first search to the 8-puzzle: (a) initial configuration; (b} final configura-
tion; and (c) states resulting from the first four steps of best-first search. Each state is labeled with
its --value (that is, the Manhattan distance from the state to the final state).
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Trees vs Graphs

m Exploring a graph as
If it was a tree.
Can be a problem...
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Figure 11.3  Two examples of unfolding a graph into a tree.
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Parallel Depth-First Challenges

m Computation is dynamic and
unstructured
Why dynamic? % N
Why unstructured?
m Decomposition approaches?

Do we do the same work as the
sequential algorithm? 7

m Mapping approaches?
How do we ensure load balance?
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Overall load-balancing strategy
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Some more detalls

m Load balancing strategies

Which processor should | ask for work?
» Global round-robin

= Asynchronous (local) round-robin
= Random

m \Work splitting strategies

Which states from my stack should | give
away?

m top/bottom/one/many



=
Analysis

m How can we analyze these algorithms?
m Focus on worst-case complexity.

m Assumptions/Definitions:
a-splitting:
s A work transfer request between two processors results in

each processor having at least aW work for O<a<=5 and W
the original work available to one processor.

V(p) the number of work-transfer requests that are

required to ensure that each processor has been

requested for work at least once.

m Then...

To = lcomm V(p) log /4




=
Analysis

m Different load balancing schemes have
different V(p)

Global round-robin: V(p)=0(p).
Asynchronous round-robin: V(p) = O(p?)
Random: V(p) = O(plog(p))



Termination Detection

m How do we know that
the total work has
finished?

Dijkstra’s algorithm
Tree-based termination
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Figure 11.10 Tree-based termination detection. Steps 1-6 illustrate the weights at various pro-
cessors after each work transfer.
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Parallel Best-First Challenges

m \Who maintains the Open & Closed lists
m How do you search a graph?



Open/Closed List Maintenance

m Centralized scheme
contention
m Distributed scheme

non-essential computations.

m periodic information
exchange.

Figure 11.14 A general schematic for parallel best-first search using a centralized strategy. The
locking operation is used here to serialize queue access by various processors.

Exchange
best nodes

] Local list Local list |
|~ Local list
| Exchange

best nodes

f{xchnn%c
best nodes

Pp—]

Py

Figure 11.15 A message-passing implementation of parallel best-first search using the ring com-

munication strategy.
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Figure 11.16  Animplementation of parallel best-first search using the blackboard communication

strategy.
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Searching graphs

m Associate a processor with each individual
node
Every time a node is generated is sent to this

processor to check if it has been generated
before.

s Random hash-function that ensures load
balancing.

High communication cost.
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Speedup Anomalies
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Figure 11.17  The difference in number of nodes searched by sequential and parallel formulations
of DFS. For this example, parallel DFS reaches a goal node after searching fewer nodes than se-
quential DFS.




