Dynamic Programming

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Addison Wesley, 2003.

Topic Overview

e Overview of Serial Dynamic Programming
e Serial Monadic DP Formulations

e Nonserial Monadic DP Formulations

e Serial Polyadic DP Formulations

e Nonserial Polyadic DP Formulations

Overview of Serial Dynamic Programming

e Dynamic programming (DP) is used to solve a wide variety
of discrete optimization problems such as scheduling, string-
editing, packaging, and inventory management.

e Break problems into subproblems and combine their solutions
into solutions to larger problems.

e INn contrast to divide-and-conquer, there may be relationships
ACross subproblems.

Dynamic Programming: Example

Consider the problem of finding a shortest path between a pair
of vertices in an acyclic graph.

An edge connecting node i fo node j has cost ¢(i, 7).

The graph contains n nodes numbered 0,1,...,n — 1, and has
an edge from node i o node j only if i < 5. Node 0O is source
and node n — 1 is the desfination.

Let f(x) be the cost of the shortest path from node 0 fo node
€.

0 x =0
f(:v){ min {f(j) +c(j,z)} 1<z<n-1

0<j<zx

Dynamic Programming: Example
@%@ c(3,4)

c(0,1)
@/ 0(1’2%2,3)\@
c(0,2) m

A graph for which the shortest path between nodes 0 and 4 is to
e computed.

£(4) = min{ f(3) + ¢(3,4), f(2) + c(2,4)}.

Dynamic Programming

e [The solufion to a DP problem is typically expressed as a
mMinimum (or maximum) of possible alternate solutions.

o If r represents the cost of a solution composed of subproblems
x1, T2, ..., x;, then r can be written as

r = g(f(xl)v f($2), R f(xl))
Here, g is the comyposifion function.

e If The optimal solution to each problem is determined by
composing optimal solufions to the subproblems and selecting
the minimum (or maximum), the formulation is said to be a DP
formulation.

Dynamic Programming: Example

f(x1)
f(:l?g) 1= g(f(fcl)a f(xS))
f(m?)) \L(x\g): min{’rl, T9, 7“3}
f(x4)
ry = g(f(x4), f(x5))
f(xs)

N
f(zq)

5 = g(f(x2), f(xs6), f(x7))
f(x7) J

Q Composition of solutions into a term

Minimization of terms

The computation and compaosifion of subproblem solutions to
solve problem f(zsg).

Dynamic Programming

e The recursive DP equationis also called the functional equation
or optimization equation.

e INn the equation for the shortest path problem the composition
function is f(j) 4+ ¢(j,z). This contains a single recursive ferm
(f(4)). Such a formulation is called monadic.

e If the RHS has multiple recursive terms, the DP formulation is
called polyadic.

Dynamic Programming

e [he dependencies beftween subproblems can be expressed as
a graph.

e If The graph can be levelized (i.e., solufions to problems at
a level depend only on solufions to problems at the previous
level), the formulation is called serial, else it is called non-serial.

e Based on these two criteria, we can classify DP formulations
into four categories - serial-monadic, serial-polyadic, non-
serial-monadic, non-serial-polyadic.

e This classification is useful since it idenftifies concurrency and
dependencies that guide parallel formulations.

Serial Monadic DP Formulations

e |t is difficult to derive canonical parallel formulatfions for the
entire class of formulations.

e For this reason, we select two representative examples, the
shortest-path problem for a mulfistage graph and the 0/1
knapsack problem.

e \We derive parallel formulatfions for these problems and identify
common principles guiding design within the class.

Shortest-Path Problem

e Special class of shortest path problem where the graph is a
weighted mulfistage graph of r» 4+ 1 levels.

e Each level is assumed to have n levels and every node at level
i iIs connected to every node af level i + 1.

e Levels zero and r contain only one node, the source and
destination nodes, respectively.

e [he objective of this problem is to find the shortest path from S
fo R.

Shortest-Path Problem

Vo

Vy

r—1
vn—l

An example of a serial monadic DP formulation for finding the shortest path in
a graph whose nodes can be organized into levels.

Shortest Path Problem

e The it node at level [in the graph is labeled v! and the cost of
an edge connecting v} o node v/ is labeled ! ..

e The cost of reaching the goal node R from any node v! is
represented by C!.

e If there are n nodes at level I, the vector [C),CL,...,CL _]T s
referred to as C!. Note that C° = [C]].

e \We have

C;=min {(c,;+C/™")|jisanode atlevel | +1}. (M

Shortest Path Problem

e Since all nodes fu;."_l have only one edge connecting them fo
the goal node R at level r, the cost C;T‘l Is equal to c;?’j%l.

e We have:
—1 —1 —1 —1
CT p— [CS,R7CI,R7 e o o ’C;_l,R]. (2)

Notice that this problem is serial and monadic.

Shortest Path Problem

The cost of reaching the goal node R from any node at level |
O<l<r—1)is

Cy = min{(ch o+ Coth), (ch +CiH), o (chn + O,
Ci = min{(d o+ C;™), (i, + i), . (d, 0+ CFYL,
Ch_, = min{(cfv,—l,o +Cyth, (02—1,1 +C1h, . (02—1,71—1 +ChED))

Shortest Path Problem

e We can express the solution tfo the problem as a modified
seguence of matrix-vector products.

e Replacing the addition operatfion by minimization and the
multiplication operation by addition, the preceding set of
equations becomes:

C'= M1 x CT 3)

where C!' and C!*! are n x 1 vectors representing the cost of
reaching the goal node from each node af levels Il and [+ 1.

Shortest Path Problem

o Matrix M; ;41 Is an n x n matrix in which entry (¢, j) stores the cost
of the edge connecting node ; at level [fo node j aflevel [+ 1.

l

!

!

C?,o C?,1 C?,n—l
C1.0 C1.1 Cln—1
Ml,l—|—1 — : ’ : ’ : ’
l l l
| Cn—1 0 Ch—1.1 Cn—l,n—l |

e [he shorfest path problem has been formulated as a sequence
of » matrix-vector products.

Parallel Shortest Path

e We can parallelize this algorithm using the parallel algorithms
for the matrix-vector product.

e O(n) processing elements can compute each vector C! in time
©(n) and solve the entire problem in fime ©(rn).

e I[N Many instances of this problem, the matrix M may be sparse.
For such problems, it is highly desirable to use sparse matrix
fechnigues.

0/1 Knapsack Problem

e We are given a knapsack of capacity ¢ and a set of n objects
numbered 1,2,...,n. Each object i has weight w; and profit p;.

o let v = [vy,v9,...,v,] e a solufion vector in which v; = 0 if
object i is not in the knapsack, and v; = 1 if it is in the knapsack.

e The goadlis to find a subset of objects to put info the knapsack

so that
mn
Z w;v; < ¢
i=1

(that is, tThe objects fit into the knapsack) and

n
E PiU;
i=1

IS maximized (that is, tThe profit is maximized).

0/1 Knapsack Problem

e The naive method is fo consider all 2™ possible subsets of the

n objects and choose the one that fits into the knapsack and
mMaximizes the profit.

o Let Fi, x| be the maximum profit for a knapsack of capacity «
using only objects {1,2,...,i}. The DP formulation is:

0 x>0,2=0
Fli,z] = ¢ —o© r<0,2=0

max{Fi — 1,z],(Fli — 1,z —w;] +p;)} 1<i<n

0/1 Knapsack Problem

e Construct a table F of size n x ¢ in row-major order.

e Filling an entry in a row requires two entries from the previous
row: one from the same column and one from the column
offset by the weight of the object corresponding to the row.

e Computing each entry takes constant time; the sequential run
time of this algorithm is ©(nc).

e [he formulation is serial-monadic.

0/1 Knapsack Problem

Table F
mn
7 F[i,]
|
2
1
Weights ——= 1 j — w; 7 c—1 ¢
Processors ——=
PO Pj—wi—l Pj—l Pc—2 Pc—l

Computing entries of table F' for the O/1 knapsack problem. The computation
of entry F'[7, j] requires communication with processing elements containing
enfries F'[i — 1,7l and F[i — 1,5 — w,].

0/1 Knapsack Problem

e Using c processors in a PRAM, we can derive a simple parallel
algorithm fthat runs in O(n) fime by partifioning the columns
QACIross pProcessors.

e In a distributed memory machine, in the jt* iteration, for
computing Flj,r] at processing element P._;, F[j — 1,r] Is
available locally but F|j — 1, r — w;] must fetched.

e The communication operation is a circular shift and the fime is
given by (ts+ty,) log c. The total fime is therefore t.+ (ts+1t,) log c.

e Across dll n iteratfions (rows), the parallel time is O(nlogc). Note
that this is not cost optimal.

0/1 Knapsack Problem

e Using p-processing elements, each processing element
computes ¢/p elements of the fable in each iteration.

e The corresponding shiff operafion takes time (2t + t,,c¢/p). since
the data block may be partitioned across two processors, but
the total volume of data is ¢/p.

e The corresponding parallel time is n(t.c/p+2ts+t,c/p), Or O(nc/p)
(which is cost-optimal).

e Note that there is an upper bound on the efficiency of this
formulation.

Nonserial Monadic DP Formulations:
Longest-Common-Subsequence

e Given asequence A = (ay,as,-..,a,), dsubsequence of A can
be formed by delefing some entries from A.

e Given two sequences A = (ai,as,...,a,) QNAd B =
(b1,b2,...,bn), find the longest sequence that is a subsequence
of both A and B.

o If A = (c,a,d,b,r,z) and B = (a,s,b, z), the longest common
subsequence of A and B is (a, b, z).

Longest-Common-Subsequence Problem

e let Fli,j] denofe the length of the longest common
subsequence of the first ;: elements of A and the first j elements
of B. The objective of the LCS problem is to find F[n, m)|.

e \We can write:

0 fi=00r;=0
Fli,jl=4{ Fli—1,j—-1+1 ifi,7 > 0and z; = y;
max {F[i, 5 — 1], Fli —1,7]} ifi,5>0and x; # y;

Longest-Common-Subsequence Problem

e The algorithm computes the two-dimensional F' table in a row-
or column-major fashion. The complexity is ©(nm).

e [reafing nodes along a diagonal as belonging to one level,
each node depends on two subproblems at the preceding
level and one subproblem two levels prior.

e This DP formulation is nonserial monadic.

Longest-Common-Subsequence Problem

0 L2 m
NV E S . o
I 0 =0 O OHOHO b O
XXX) NN |
2 =GO O OHOHO b i O
XX N | NN |
=GO O 02030 10
0 =000 O+0++0 O
/’ PO Pl Pn—l
(a) b

(a) Computing entries of table F' for the
longest-common-subbsequence problem. Computation
proceeds along the dofted diagonal lines. (b) Mapping

elements of the tfable to processing elements.

Longest-Common-Subsequence: Example

Consider the LCS of two amino-acid sequencesH E A G A W G
HEEanNdP A W H E A E. Forthe interested reader, the names
of the corresponding amino-acids are A: Alanine, E: Glutamic
acid, G: Glycine, H: I:listidipeé Pi Prwoli(r}weé deEW: Tryptophan.

The F' table for computing the LCS of the sequences. The LCSis A
W HE E.

Parallel Longest-Common-Subsequence

e Table enftries are computed in a diagonal sweep from the top-
left fo the bottom-right corner.

e Using n processors in a PRAM, each enftry in a diagonal can be
computed in constant time.

e For two sequences of length n, there are 2n — 1 diagonails.

e The parallel run time is ©(n) and the algorithm is cost-optimal.

Parallel Longest-Common-Subsequence

e Consider a (logical) linear array of processors. Processing
element P; is responsible for the (i 4+ 1)th column of the table.

e TO compute Fi,j|. processing element P,_; may need either
Fli—1,5—1]or F|i,j — 1] from the processing element fo its left.
This communication takes time ¢, + t,,.

e The computation takes constant fime (t.).

e We have:
T = (2n — 1)(ts + ty + to).

e Note that this formulatfion is cost-optimal, however, its efficiency
is upper-bounded by 0.5!

e Can you think of how to fix this?

Serial Polyadic DP Formulation: Floyd’s All-Pairs
Shortest Path

e Given weighted graph G(V, F), Floyd’s algorithm determines
the cost d; ; of the shortest path between each pair of nodes
inV.

o Let d ; be the minimum cost of a path from node i to node j,
using only nodes vg, vy, ..., Vk_1.

e \We have:

ko Cz',j k=20

dz',j—{ min {d; ', (d¥t+di)y 0<k<n-—1" “)

e Each iteration requires tfime ©(n?) and the overall run time of
the sequential algorithm is ©(n?).

Serial Polyadic DP Formulation: Floyd’s All-Pairs
Shortest Path

e A PRAM formulation of this algorithm uses n? processors in @
logical 2D mesh. Processor P; ; computes the value of dy ; for
k=1,2,...,nIn constant fime.

e The paradllel runtime is ©(n) and it is cost-optimal.

e The algorithm can easily be adapted to practical architectures,
as discussed in our treatment of Graph Algorithmes.

Nonserial Polyadic DP Formulation: Optimal
Matrix-Parenthesization Problem

e When multiplying a sequence of mairices, the order of
multiplication significantly impacts operation count.

e Let C|i,j5] be the opfimal cost of multiplying the matrices
Ao A

e [The chain of mafrices can be expressed as a product of two
smaller chains, A4;, A;41,..., A and Agiq,..., Aj.

e The chain A;, A;11,..., A results in a matrix of dimensions r; _; x
re, And the chain Ag41,..., A; results in a matrix of dimensions
T X T;j.

e The cost of multiplying these two matrices is r;,_1rir;.

Optimal Matrix-Parenthesization Problem

e \We have:

1<k<j
0 1=10<1<n
€o),

Cli { min {C[i, k] + C[k + 1,5] +ri_1rpr;} 1<i<j<n
1,] =

Optimal Matrix-Parenthesization Problem

A nonserial polyadic DP formulation for finding an optimal matrix
parenthesization for a chain of four matrices. A square node
represents the optimal cost of multiplying a matrix chain. A circle

node represents a possible parenthesization.

Optimal Matrix-Parenthesization Problem

e The goal of finding C[1,n] is accomplished in a boftom-up
fashion.

e Visualize this by thinking of filing in the C table diagonally.
Enfries in diagonal [corresponds to the cost of mulfiplying
maftrix chains of length [+ 1.

e The value of CJi, j] is computed as min{C|i, k| + Clk + 1,j]| +
ri—1rri b, where k can take values from i fo j — 1.

e Computing Cli, j| requires that we evaluate (j — i) terms and
select their minimum.

e The computatfion of each ferm takes time t., and fthe
computation of C'|i, j] fakes time (j—i)t.. EQch entry in diagonal
[can be computed in fime k..

Optimal Matrix-Parenthesization Problem

e The algorithm computes (n — 1) chains of length two. This takes
time (n — 1)t.; computing (n — 2) chains of length three takes
time (n — 2)2t.. In the final step, the algorithm computes one
chain of length n in time (n — 1)t..

e [t follows that the serial fime is ©(n?).

Diagonal 0

o S oz
— = = = =
c = = =
S o 1S o
80 &0 80 g0
o < s < e
. p— - . p— . p—
S A @) A @)
7 7 7 7
n A e S eSS g
I~ s 2 &) = % % &
! = Q o NJ v o = ®
o \ ~ ~ ~ ~
t 1 \\\\\\\ - I - - - - - - - - - -7 - - —->--—---
q O/ = = — T =T T = = = i
N Q. | & & & & & & S
u ! U Q 6 M 6\ m G |
s ’% \\\\\\\ B e el i Tl Rt E /
e O T— T = = = =1 =
P, @) <)) <)) [,,
L L LS o) NJ) S |
[ur— = = == — L =1
n < T =7 -~ S ="
O 5l [l Ial el T4l
(a1 A 7" - 11— = L=~
3, < < < <t |
[| P, — N o <t I
X e e T g ==
(1] ’ \.\
- e A o
~~ ~~ ~~ 4
=N @ @l
O e) < |
/
M — =",
P, a N I
|| | L Q |
T L \
m o2
» — P, —_ I
[— | L=1

The diagonal order of computation for the optimal
nmaftrix-parenthesization problem.

Parallel Optimal Matrix-Parenthesization Problem

e Consider a logical ring of processors. In step [, each processor
computes a single element belonging to the I** diagonall.

e On computing the assigned value of the element in tfable C,
each processor sends its value to all other processors using an
all-to-all broadcast.

e The next value can then be computed locally.

e The fotal fime required to compute the entries along diagonadl
Lislt. +tslogn + ty,(n — 1).

e The corresponding parallel time is given by:

Tp = Z(ltc + tslogn + t,(n — 1)),

)(1)

—1
=1
(n —

1
5 te +ts(n —1)logn + t,(n — 1)

Parallel Optimal Matrix-Parenthesization Problem

e When using p (< n) processors, each processor stores n/p
nodes.

e The fime taken for all-to-all broadcast of n/p words is ¢, logp +
tun(p—1)/p =~ tslogp+t,n and the time to compute n/p entries
of the table in the 1" diagonal is it.n/p.

e The parallel run fime is

1

S
|

Tp = (lten/p 4+ tslogp + tyn),

[

!

—_

n?(n —1)

— > te +ts(n—1)logp + tyn(n —1).
1%

e Tp =0(n’/p) +O(n?).

e This formulation can be improved to use up fo n(n + 1)/2
processors using pipelining.

Discussion of Parallel Dynamic Programming
Algorithms

e By representing computation as a graph, we identify three
sources of parallelism: parallelism within nhodes, parallelism
across nodes afr a level, and pipelining nodes across multiple
levels. The first two are available in serial formulations and the
third one in nhon-serial formulations.

e Data locality is crifical for performance. Different DP
formulations, by the very nature of the problem instance, have
different degrees of locality.

