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Elements of a Parallel Computer

m Hardware

Multiple Processors

Multiple Memories

Interconnection Network
m System Software

Parallel Operating System

Programming Constructs to Express/Orchestrate Concurrency
m Application Software

Parallel Algorithms

Goal:
Utilize the Hardware, System, & Application Software to either

Achieve Speedup: T, = T/p
Solve problems requiring a large amount of memory.



Parallel Computing Platform

m Logical Organization

The user’s view of the machine as it is being
presented via Its system software

m Physical Organization
The actual hardware architecture

m Physical Architecture Is to a large extent
iIndependent of the Logical Architecture



Logical Organization Elements

m Control Mechanism

SISD/SIMD/MIMD/MISD

= Single/Multiple Instruction Stream
& Single/Multiple Data Stream

SPMD:
Single Program Multiple Data

PE: Processing Element
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Figure 2.3 A typical SIMD architecture (a) and a typical MIMD architecture (b).
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Figure 2.4 Executing a conditional statement on an SIMD computer with four processors: (a) the
conditional statement; (b) the execution of the statement in two steps.




S
Logical Organization Elements

@ Communication Model

Shared-Address Space Message-Passing
= UMA/NUMA/ccNUMA
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Figure 2.5 Typical shared-address-space architectures: (a) Uniform-memory-access shared-
address-space computer; (b) Uniform-memory-access shared-address-space computer with caches
and memories; (c) Non-uniform-memory-access shared-address-space computer with local memory
only.
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Physical Organization

m |deal Parallel Computer Architecture
PRAM: Parallel Random Access Machine

m PRAM Models

EREW/ERCW/CREW/CRCW
m Exclusive/Concurrent Read and/or Write

Concurrent Writes are resolved via
s Common/Arbitrary/Priority/Sum



Physical Organization

m Interconnection Networks (ICNs)
Provide processor-to-processor and processor-to-memory

connections

Networks are classified as:

m Static m Dynamic
Consist of a number of The network consists of
point-to-point links switching elements that the

various processors attach to

= direct network = indirect network

Historically used to link Historically used to link
pProcessors-to-processors processors-to-memory
= distributed-memory m shared-memory systems

system
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Static & Dynamic ICNs

Indirect network

Static network

/

Processing node

Network interface/switch

Switching element

Figure 2.6 Classification of interconnection networks: (a) a static network; and (b) a dynamic

network.
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Evaluation Metrics for ICNSs

m Diameter
The maximum distance between any two nodes
m  Smaller the better.
m  Connectivity

The minimum number of arcs that must be removed to break it into two
disconnected networks

m Larger the better
Measures the multiplicity of paths

m Bisection width

The minimum number of arcs that must be removed to partition the network into
two equal halves.

m Larger the better
m Bisection bandwidth

Applies to networks with weighted arcs—weights correspond to the link width
(how much data it can transfer)

The minimum volume of communication allowed between any two halves of a
network

m Larger the better
m Cost

The number of links in the network
= Smaller the better
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Metrics and Dynamic Networks

Figure 220 Bisection width of a dynamic network is computed by examining various equi-
partitions of the processing nodes and selecting the minimum number of edges crossing the par-
tition. In this case, each partition yields an edge cut of four. Therefore, the bisection width of this

graph is four.
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Network Topologies

Shared Memory

Shared Memory
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Network Topologies

m Crossbhar Networks
Switch-based network

Supports simultaneous
connections

Evaluation:
m Diameter: O(1)
s Connectivity: O(1)?
m Bisection width: O(p)?
= Cost: O(p?)
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Network Topologies

m Multistage Interconnection Networks
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Figure 2.9 The schematic of a typical multistage interconnection network.



Multistage Switch Architecture
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A complete omega network connecting eight inputs and eight outputs.
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Cross-over



" J
Connecting the Various Stages

000 O 0 000 = left rotate(000)
001 001 = left rotate(100)
010 010 = left rotate(001)
011 011 =left rotate(101)
100 100 = left rotate(010)
101 101 =left rotate(110)
110 110 = lett rotate(011)
7 7 111 =left rotate(111)

Figure 2.10 A perfect shuffle interconnection for eight inputs and outputs.
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Blocking In a Multistage Switch

Routing is done by comparing the bit-level
representation of source and destination addresses.
-match goes via pass-through

-mismatch goes via cross-over

000 —— 000
001 001

—— 010
— 011

100
—— 101

o < 110
111 — b 111

Figure 2.13  An example of blocking in omega network: one of the messages (010 to 111 or 110
to 100) is blocked at link AB.
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Network Topologies

m Complete and star-connected networks.

(a) (b)

Figure 2.14 (a) A completely-connected network of eight nodes; (b) a Star connected network of
nine nodes.
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Network Topologies

m Cartesian Topologies

C ) C ) () () () ()
/ / / N> _J N N N

(a) (b)

Figure 2.15 Linear arrays: (a) with no wraparound links; (b) with wraparound link.

1 1 I 1 S

N N ra N (_( 3 i\ ) ) = -, N
./ \/ \_/ \_ Y Y Y - (; J
. g . j \)I/ \JX é\ _/r P f\l
vy .
" g e - ' \ Y f -\\ I/ - '-.- " _._ - \ )
—( } ( ;\ N j ¢ j— (“\ J L ./ " \") ( 0N ey, /‘ ‘)
Josi¥e:: %1
3 ;
— ' ( ( W—{ AT MW P
O —O— (_<} o \}-) ST O L)
[
/ ' N N D Y Y Y C-" L~ W
N N N \I;— ('(é ) ) kéj (/ ( (f\
(a) (b) ©

Figure 2.16 Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh

with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.
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Network Topologies

m Hypercubes
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Figure 217  Construction of hypercubes from hypercubes of lower dimension.
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Network Topologies

m [rees
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Summary of Performance Metrics

Table 2.1 A summary of the characteristics of various static network topologies connecting p

nodes.
Bisection  Arc Cost

Network Diameter Width Connectivity  (No. of links)
Completely-connected 1 pz /4 p—1 p(p—1)/2
Star 2 1 1 p—1
Complete binary tree 2log((p +1)/2) 1 I p—1
Linear array p—1 1 1 p—1
2-D mesh, no wraparound  2(,/p — 1) N/ 2 2(p — /D)
2-D wraparound mesh 21/p/2] 2./p 4 2p
Hypercube log p p/2 log p (plogp)/2
Wraparound k-ary d-cube  d|k/2] 2k9-1 2d dp

Table 2.2 A summary of the characteristics of various dynamic network topologies connecting p
processing nodes.

Bisection  Arc Cost
Network Diameter Width Connectivity  (No. of links)
Crossbar l P 1 P>
Omega Network  log p p/2 2 p/2

Dynamic Tree 2log p l 2 p—1
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Physical Organization

m Cache Coherence in Shared Memory
Systems
A certain level of consistency must be

maintained for multiple copies of the same
data

Required to ensure proper semantics and
correct program execution

m serializability

Two general protocols for dealing with it
m invalidate & update
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Invalidate/Update Protocols

PO Pl PO Pl
load x load x write #3, x
Invalidate
Memory Memory
PO Pl PO Pl
load x load x write #3, x
x =1 x =1 x =3 X =
x =1 X =3
Update
Memory Memory
(b)

Figure 2.21 Cache coherence in multiprocessor systems: (a) Invalidate protocol; (b) Update pro-
tocol for shared variables.
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Invalidate/Update Protocols

m The preferred scheme depends on the
characteristics of the underlying application
frequency of reads/writes to shared variables

m Classical trade-off between communication
overhead (updates) and idling (stalling In
iInvalidates)

m Additional problems with false sharing

m EXisting schemes are based on the invalidate
protocol

A number of approaches have been developed for
maintaining the state/ownership of the shared data



JE—
Communication Costs In Parallel

Systems

m Message-Passing Systems

The communication cost of a data-transfer
operation depends on:
m start-up time: t,

add headers/trailer, error-correction, execute the routing

algorithm, establish the connection between source &
destination

m per-hop time: t;,
time to travel between two directly connected nodes.
* node latency

m per-word transfer time: t,,
1/channel-width
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Store-and-Forward & Cut-Through

Routing
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(a) A single message sent over a
store-and-forward network

(b) The same message broken into two parts

and sent over the network.

(c¢) The same message broken into four parts

and sent over the network.

teomm = ts + (mty, + fh)]—

leomm = ls + mlty,.

teomm = Is + ]f}; + f,m.
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Cut-through Routing Deadlocks

I
Flit from message 0 Messages O’ 11 2’ and 3
D &D D‘“ H need to go to nodes A, B,
2 [ — o] I S C, and D, respectively
[ag] "
= 2
= i
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] 7
- H — \“\D | |:L
A — Flit from message 2D :
Flit buffers

----=Desired direction of message traversal

Figure 2.27 An example of deadlock in a cut-through routing network.
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Communication Model Used for

this Class

m \WWe will assume that the cost of sending a
message of size m Is:

lecomm = ls + lyym

m In general true because t, is much larger
than t,, and for most of the algorithms that
we will study mt, Is much larger than It
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Routing Mechanisms

m Routing:

The algorithm used to determine the path that
a message will take to go from the source to
destination

m Can be classified along different
dimensions
minimal vs non-minimal
deterministic vs adaptive
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Dimension Ordered Routing

m There is a predefined ordering of the dimensions
m Messages are routed along the dimensions in that order
until they cannot move any further
X-Y routing for meshes
E-cube routine for hypercubes

Step 1 (010 =110) Step 2 (110 =111)

Figure 2.28 Routing a message from node P, (010) to node P, (111) in a three-dimensional
hypercube using E-cube routing.



Topology Embeddings

m Mapping between networks

Useful in the early days of parallel computing

when topology specific algorithms were being
developed.

m Embedding quality metrics
dilation

= maximum number of lines an edge is mapped to
congestion

= maximum number of edges mapped on a single
link



Mapping a Cartesian Topology
onto a Hypercube

Cool things ©

1-bit Gray code 2-bit Gray code  3-bit Gray code 3-D hypercube  8—processor ring
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Figure 2.30 (a) A three-bit reflected Gray code ring; and (b) its embedding into a three-dimensional
hypercube.
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Mapping a Cartesian Topology

onto a Hypercube
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Figure 231 (a) A 4 x 4 mesh illustrating the mapping of mesh nodes to the nodes in a four-
dimensional hypercube; and (b) a 2 x 4 mesh embedded into a three-dimensional hypercube.



