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Background

m Input Specification
Each processor has n/p elements
A ordering of the processors

m Output Specification

Each processor will get n/p consecutive elements of
the final sorted array.

The “chunk” is determined by the processor ordering.

m Variations

Unequal number of elements on output.

m In general, this is not a good idea and it may require a shift to
obtain the equal size distribution.
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Basic Operation:
Compare-Split Operation

S ——— aj,a; minfa;,a;)  maxla;.a;) Single element per processor
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Figure 9.1 A parallel compare-exchange operation. Processes /; and P; send their elements to
each other. Process /; keeps min{a;, a;}, and P°; keeps max{a; . a;}.
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Figure 9.2 A compare-split operation. Each process sends its block of size #/p to the other
process. Each process merges the received block with its own block and retains only the appropriate
half of the merged block. In this example, process 7; retains the smaller elements and process P;
retains the larger elements.




Sorting Networks

m Sorting is one of the fundamental problems in
Computer Science

m For a long time researchers have focused on the
problem of “how fast can we sort n elements”™?
Serial
= nlog(n) lower-bound for comparison-based sorting
Parallel
= O(1), O(log(n)), O(?2?)
m Sorting networks

Custom-made hardware for sorting!
s Hardware & algorithm

= Mostly of theoretical interest but fun to study!



Elements of Sorting Networks

m Key ldea:

Perform many comparisons in
parallel.

m Key Elements:

Comparators:

m Consist of two-input, two-output
wires

m Take two elements on the input
wires and outputs them in sorted
order in the output wires.

Network architecture:

= The arrangement of the
comparators into interconnected
comparator columns

similar to multi-stage networks

m Many sorting networks have been
developed.
Bitonic sorting network

= O(log?(n)) columns of
comparators.

x" = min{x, v} x' = min{x, v}

V o —d

v = max{x, y} »" = max{x, v}

(a)

x’ = max{x, »} x’ = max|x, v}

r — — X

v = min{x, y} v = minfx, v}
(b)

Figure 9.3 A schematic representation of comparators: (a) an increasing comparator, and (b) a
decreasing comparator.
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Figure 9.4 A typical sorting network. Every sorting network is made up of a series of columns,
and each column contains a number of comparators connected in parallel.
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Bitonic Sequence

A bitonic sequence 1s a sequence of elements (ag, ai, ..., a,—1) with the property that
either (1) there exists an index i, 0 < i < n — 1, such that {ag, ..., a;) 1s monotonically
increasing and (a;41, ..., a,—1) 1s monotonically decreasing, or (2) there exists a cyclic

shift of indices so that (1) 1s satisfied. For example, (1, 2,4, 7, 6, 0) 1s a bitonic sequence,
because 1t first increases and then decreases. Similarly, (8,9, 2, 1, 0, 4) 1s another bitonic

sequence, because 1t 1s a cyclic shift of (0,4, 8,9, 2, 1).

Bitonic sequences are
graphically represented
by lines as follows:
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Why Bitonic Sequences?

m A bitonic sequence can be “easily” sorted in
iIncreasing/decreasing order.

Lets = (ag, ay, ..., an—1) be a bitonic sequence such thatag <a) < ... <

ay/p—1 and a2 = dayp41 = ... = ay—1. Consider the following subsequences of s:

Bitonic
Split

* (9.1)

52 (max{ag, an2}, max{ay, apj241}, ..., max{a,2—1, ap-1})

S S, S, /\
\ AN
/ NI EVZER

 Every element of s; will be less than or equal to every element of s,
* Both s, and s, are bitonic sequences.
« So how can a bitonic sequence be sorted?




An example

Original
sequence
Ist Split
2nd Split
3rd Split
4th Split

h GO 0O GO ©COo

10 12
0 12
10 12
109
9 | 10

14 20
4 0
14 9
14 12
12 | 14

95 90
95 90
35 23
18 20
18 | 20

60
60
18
35
23

40
40
20
23

| 35

35 23
35 23
95 90
60 40
40 | 60

18 0
18 20
60 40
95 90
90 | 95

Figure 9.5 Merging a 16-element bitonic sequence through a series of log 16 bitonic splits.
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Bitonic Merging Network

m A comparator network that
takes as input a bitonic
sequence and performs a
sequence of bitonic splits
to sort it.

+BM[n]
= A bitonic merging
network for sorting in
increasing order an n-

element bitonic
sequence.

-BM[n]

= Similar sort in decreasing
order.
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Figure 9.6 A bitonic merging network for » = 16. The input wires are numbered 0, 1 ...,n — 1,
and the binary representation of these numbers is shown. Each column of comparators is drawn
separately; the entire figure represents a BM[16] bitonic merging network. The network takes a
bitonic sequence and outputs it in sorted order.
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Are we done”?

m Given a set of elements, how do we re-arrange them into
a bitonic sequence?
m Key ldea:

Use successively larger bitonic networks to transform the set into
a bitonic sequence.

Wires
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Figure 9.7 A schematic representation of a network that converts an input sequence into a bitonic
sequence. In this example, &BM[k] and ©BM[k] denote bitonic merging networks of input size &
that use & and & comparators, respectively. The last merging network (BM[16]) sorts the input.
In this example, n = 16.
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An example
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Figure 9.8 The comparator network that transforms an input sequence of 16 unordered numbers
into a bitonic sequence. In contrast to Figure 9.6, the columns of comparators in each bitonic merging
network are drawn in a single box, separated by a dashed line.
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Complexity

m How many columns of
comparators are required
to sort n=2! elements?

l.e., depth d(n) of the
network?

dn)y =dn/2) + logn

Wires
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o < Sz ] o g =
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d(n) = Zl.ozglnz' = (log”n + logn)/2 = @(log’ n).

1
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Bitonic Sort on a Hypercube

m One-element-per-processor case

How do we map the algorithm onto a hypercube?
m What is the comparator?
s How do the wires get mapped?
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lllustration
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Figure 9.9 Communication during the last stage of bitonic sort. Each wire is mapped to a hyper-
cube process; each connection represents a compare-exchange between processes.
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Communication Pattern

Processors
0000 — - - - —
ooor — 11 - - —
0010 — — 21 - .
0011 — 1 — — — —
0100 — ] 321 —
oror— 1 1 — - —
0110 — — 2D - .
0111 — : — — — 4321 [~
1000 — — — — T =
1001 — 1 - - — —
1010 — — 2D - .
1011 — 1 — — 321 —
1100 — - — . —
1101 — 1 - — — —
1110 — — 2D - .
i — U — — —
Stage 1 Stage 2 Stage 3 Stage 4
Figure 9.10 Communication characteristics of bitonic sort on a hypercube. During each stage of
the algorithm, processes communicate along the dimensions shown.




Algorithm

procedure BITONIC_SORT (/abel, d)
begin
fori :==0tod — 1do
for j := i downto O do
if (i + 1)* bit of label # j" bit of label then
comp_exchange_max(j);
else
comp_exchange_min(j);
end BITONIC_SORT

A AT ANl ol o

Algorithm 9.1  Parallel formulation of bitonic sort on a hypercube with » = 29 processes. In this
algorithm, /abel is the process's label and 4 is the dimension of the hypercube.

Complexity?
Tp = O(log” n)
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Bitonic Sort on a Mesh

m One-element-per-processor case
How do the wires get mapped?

Which one is better?
Why?
Processors
0000 — — — - -
0001 —| 1 - - || -
(a) (b) (c) 0010 — 20 | -
0011 — 1 - a0y -
. . . . . . . 0100 — - R - —
Figure 9.11 Different ways of mapping the input wires of the bitonic sorting network to a mesh 0101 — 1 . [ - -
of processes: (a) row-major mapping, (b) row-major snakelike mapping, and (c) row-major shuffled :;m ] | 1 - H ] i3al —
mapping. 1000 — - - -
1001 — ! - - - L
1010 — — 21 - L
1011 — | — — 321 — —
1100 — | — — ) — -
1101 — | —| | |
1110 — - - -
111 — ! — - - —
Stage | Stage 2 Stage 3 Stage 4




Stage 4
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Figure 9.12 The last stage of the bitonic sort algorithm for » = 16 on a mesh, using the row-
major shuffled mapping. During each step, process pairs compare-exchange their elements. Arrows
indicate the pairs of processes that perform compare-exchange operations.
Complexity?

that differ in the least-significant bit) are neighbors.
i"™ least-significant bit are mapped onto mesh processes that are 21¢~1/2) communication

links away. The compare-exchange steps of the last stage of bitonic sort for the row-major

In general, wires that differ in the

logn
2=

S _ 202 & 7

communication performed by each process

Can we do better?
What is the lowest bound of sorting on a mesh?
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More than one element per

processor
m Hypercube

local sort comparisons communication

(n n (n 5 Nz 5 |
I'p=0—=log—|+O|—=log"p|+O | —=log"p].
P P P P

m Mesh

local sort comparisons communication
r_'/‘"—-\.

| n n\ (n ) [ n
I'p =0 (— log —) + 0 (— log” p) + ©® (—)
p P p VP




Bitonic Sort Summary

Table 9.1 The performance of parallel formulations of bitonic sort for » elements on p processes.

Maximum Number of Corresponding Isoefficiency
Architecture  Processes for £ = ®(1) Parallel Run Time Function
Hypercube  ©(2v1087) On/2V8) loon)  O(plo2P log? p)
Mesh ®(log? n) ®(n/ logn) OQ2V?P /p)
Ring O (logn) ®(n) @27 p)
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Quicksort

1.  procedure QUICKSORT (4,q,r)

2. begin

i gggi:”hen (a) 3 (21|58 ]4]|3 |7

5. x = Alql: .
6. si=q; 123 |s5|s|a]3]7 Pivot
7. fori:=qg+ 1tordo

8. if A[] < x then Final position
9 begin (©) 1|23 (3 (4(|5(8]7

10. s:=s+4+1;

1. swap(A[s]. A[71); @ |1]2[3]|3]a|s]|7][8

12. end if

13. swap(Alq]. Als]):

14. QUICKSORT (4.4q.s); (e) 1233 [4]5]7]|8

15. QUICKSORT (4.5 + 1,7);

16. end if

17.  end QUICKSORT
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Parallel Formulation

m How about recursive decomposition?

Is it a good idea?

m \We need to do the partitioning of the array around
a pivot element in parallel.

m \What is the lower bound of parallel
quicksort?

What will it take to achieve this lower bound?
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Optimal for CRCW PRAM

m One element per processor
m Arbitrary resolution of the concurrent writes.

m Views the sorting as a two-step process:
(i) Constructing a binary tree of pivot elements

(i) Obtaining the sorted sequence by performing an inorder
traversal of this binary tree.

N anoonoo

) IR
(b) |l|3|3|5|}_;|4‘3|?‘ Dh\ol
(c) | 1 i 2 l 3 | 3 | 4 ‘ 5 ‘ I | 7 i D Final position

w [fa]s]sfafs]o]s]

Figure 9.16 A binary tree generated by the execution of the quicksort algorithm. Each level of the
(e) | 1 [ 2 ‘ 3 | 3 | 4 [ 5 ‘ 7 | 8 | tree represents a different array-partitioning iteration. If pivot selection is optimal, then the height of
the tree is @ (log n), which is also the number of iterations.




Building the Binary Tree

12

13.
14.
15.
16.
17.
18.
19.
20.
21.
22
23,
24

i~ i e AN U il e

0.
1

procedure BUILD_TREE (A[l...n])
begin
for each process i do
begin
root =i
parent; := root,
leftchild|i] = rightchild[i] :=n + 1;
end for
repeat for each process i # rootf do
begin

if (A|i] < A|parent;]) or

(Ali] = Alparent;] and i <parent;) then
begin

lefichild|parent;] =i,

if i = lefichild| parent;] then exit
else parent; := lefichild| pareni;];
end for
else
begin

rightchild| parent;] :=i;
ifi =rightchild|parent;] then exit
else parent; :=rightchild| parent;);
end else
end repeat
end BUILD_TREE

Algorithm 9.6 The binary tree construction pracedure for the CRCW PRAM parallel quicksort

formulation.

Complexity?

® (logn)

I 2 3 4 5 6 7 8
3 5 7
(a) [33]21]13]sa]s2[33]a0] 72 1 23 43 6 7 8
: leftchild 1
rightchild 5 (<)
(b} root =4
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
lefichild | 2 118 lefichild | 2|3 1|8
(d) rightehild 6 5 rightchild 6 5 ) (e)
[4] {54}
(0

[1] {33} [5] {82}

(81472}

an

[3] {13} [7] {403

o B

Figure 9.17  The execution of the PRAM algorithm on the array shown in (a). The arrays leftchild
and rightchild are shown in (c), (d), and (e) as the algorithm progresses. Figure (f) shows the binary
tree constructed by the algorithm. Each node is labeled by the process (in square brackets), and
the element is stored at that process (in curly brackets). The element is the pivot. In each node,
processes with smaller elements than the pivot are grouped on the left side of the node, and those
with larger elements are grouped on the right side. These two groups form the two partitions of the
original array. For each partition, a pivot element is selected at random from the two groups that form
the children of the node.
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Practical Quicksort

P P P

i Foo Py 5 ; 4 :
|'-‘|IF|]H|2|I?|1|11|21||r.|]u||5|U|F|Iﬁ|]u|1||t|]2|5|x| pivot selection

pivol=7

I P,

Py : Py : ! 4 :
i after local
s

m Shared-memory
: 2 7 3 I 2 I I e
Data resides on a shared array. T

During a partitioning each T h T
) . [7]2]1]e]3]a]s|is]is[17][1a]20]10]1s] 0 [19]16][12[ 1] 8| pivot selection
processor is responsible for a

First Step

. . £l n o P S
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Third Step

Py

after local

P
'“| ? | 8 | '3| 11 ”| '7| ”| ]5| 16 rearrangement

Fourth Step

P Py
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12 | .1|-I | 5 7 &]‘J]lu|]l|]3 1_1l|4[|:1||f\||'? |N|I'J|:u| Solution

Figure 9.18  An example of the execution of an efficient shared-address-space quicksort algorithm.
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Efficient Global Rearrangement

, Py : Py i P § P3 § Py :
|7 [13]18] 2 [17] 1 [14]20] 6 [10]15] 9| 3 |16]19] 4 [11]12] 5] 8] pivot selection
pivot=7
, 0 i Py i Py § Ps i Py i
(712 ws[ i3] 1 7] 1a]20] 6 [10]15] 9 |3 |« [19]16] 5 [12]1a] 8| *Rerlocal
2 =l ~ — — - . rearrangement
s 2 [ ]2 )] (2]3]3]2]3] 1Ll
l Prefix Sum j J Prefix Sum {
lo|2]3]4]6]7] lo]2]5]8]10]13]
»
'
BB [ [T s [olelaluls] 22,
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Figure 9.19  Efficient global rearrangement of the array.
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Practical Quicksort

m Complexity

local sort array splits

| n n (n ,
I'p=0 (— log —) + 0 (— log p) + O (log” p).
P P P

overall isoefficiency of ®(p log? p).

Complexity for message-passing is similar assuming that the all-to-all
personalized communication is not cross-bisection bandwidth limited.
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A word on Pivot Selection

m Selecting pivots that lead to balanced
partitions is importance

height of the tree
effective utilization of processors
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Sample Sort

m Generalization of bucket sort with data-driven sampling
n/p elements per-processor.
Each processor sorts is local elements.

Each processor selects p-1 equally spaced elements from its
own list.

The combined p(p-1) set of elements are sorted and p-1 equally
spaced elements are selected from that list.

Each processor splits its own list according to these splitters into
p buckets.

Each processor sends its ith bucket to the ith processor.
Each processor merges the elements that it receives.
Done.
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Sample Sort lllustration

5 To 5 P | P |
122 7 [13]1s] 2 [17] 1 [14]20] 6 [10]24]15] o [21] 3 [16]10]23] 4 [11]12] 5] 8]
5 Mo : Py 5 P 5
1] 2]7]3|1a]17]18]22] 3| 6 [ 9 |10]15]20]21]24] 4 | 5 [ 8|11 ]12]16]19]23]
R
\h\""ﬁ-\.
~—_ -
.
|7 [17] 9 [20] 8 |16]
7 18] o [16[42] 20
5 Fo ; i | P2 |
i]2]3]a]s]e|7]s]o]io]u]i2[13[1a]15]16]17]18]19]20]21[22]23]24]

Initial element
distribution

Local sort &
sample selection

Sample combining

Global splitter
selection

Final element
assignment

Figure 9.20 An example of the execution of sample sort on an array with 24 elements on three

processes.
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Sample Sort Complexity

local sort sort sample block Iii_lftltlon

M

communication

Tp =0 (E log E) + 6 (p2 log p) + 6 (p log i) +t&)(n/p) + O(plog p).'
P P P

7 C

Assumes
a serial sort

In this case, the isoefficiency function is @ (p> log p). If bitonic sort is used to sort the
p(p — 1) sample elements, then the time for sorting the sample would be ®(p log p), and
the isoefficiency will be reduced to ® (p? log p) (Problem 9.30).




