
CHAPTER 2 - APPLICATIONCHAPTER 2 - APPLICATION
LAYERLAYER

1

GOALSGOALS

2

PRINCIPLES OF NETWORK APPLICATIONSPRINCIPLES OF NETWORK APPLICATIONS

3 . 1

SOME NETWORK APPLICATIONSSOME NETWORK APPLICATIONS
e-mail & web

remote login

P2P �le sharing

multi-user network games

streaming stored video (YouTube, Hulu, Net�ix)

voice over IP (e.g., Skype)

real-time video conferencing

search

…

3 . 2

CREATING A NETWORK APPCREATING A NETWORK APP

3 . 3

CREATING A NETWORK APPCREATING A NETWORK APP
Write programs that:

run on (different) end systems

communicate over network

e.g., web server software communicates with browser software

No need to write software for network-core devices

network-core devices do not run user applications

applications on end systems allows for rapid app development,
propagation

3 . 4

APPLICATION ARCHITECTURESAPPLICATION ARCHITECTURES
client-server

peer-to-peer (P2P)

4 . 1

CLIENT-SERVER ARCHITECTURECLIENT-SERVER ARCHITECTURE

4 . 2

CLIENT-SERVER ARCHITECTURECLIENT-SERVER ARCHITECTURE
server

always-on host

permanent IP address

data centers for scaling



4 . 3

CLIENT-SERVER ARCHITECTURECLIENT-SERVER ARCHITECTURE
clients

communicate with server

may be intermittently connected

may have dynamic IP addresses

do not communicate directly with each other



4 . 4

P2P ARCHITECTUREP2P ARCHITECTURE

4 . 5

P2P ARCHITECTUREP2P ARCHITECTURE
no always-on server

arbitrary end systems directly communicate

peers request service from other peers, provide service in return
to other peers

self scalability – new peers bring new service capacity, as well as
new service demands

peers are intermittently connected and change IP addresses

complex management

4 . 6

PROCESSES COMMUNICATINGPROCESSES COMMUNICATING
Process

program running within a host

within same host, two processes communicate using inter-
process communication (de�ned by OS)

processes in different hosts communicate by exchanging
messages



4 . 7

PROCESSES COMMUNICATINGPROCESSES COMMUNICATING
client process

process that initiates communication

server process

process that waits to be contacted

aside: applications with P2P architectures have client processes
and server processes





4 . 8

SOCKETSSOCKETS
process sends/receives messages to/from its socket

socket analogous to door

sending process shoves message out door

sending process relies on transport infrastructure on other side
of door to deliver message to socket at receiving process

4 . 9

ADDRESSING PROCESSESADDRESSING PROCESSES
to receive messages, process must have identi�er

host device has unique 32-bit IP address

Q: does IP address of host on which process runs suf�ce for
identifying the process?

A: no, many processes can be running on same host

identi�er includes both IP address and port numbers associated
with process on host.

4 . 10

EXAMPLE PORT NUMBERS:EXAMPLE PORT NUMBERS:
HTTP server: 80

mail server: 25

to send HTTP message to gaia.cs.umass.edu web server:

IP address: 128.119.245.12

port number: 80

more shortly…

4 . 11

APP-LAYER PROTOCOL DEFINESAPP-LAYER PROTOCOL DEFINES
types of messages exchanged

e.g., request, response

message syntax:

what �elds in messages and how �elds are delineated

message semantics

meaning of information in �elds

rules for when and how processes send and respond to messages

4 . 12

PROTOCOL TYPESPROTOCOL TYPES
Open protocols:

de�ned in RFCs

allows for interoperability

e.g., HTTP, SMTP

Proprietary protocols:

e.g., Skype

4 . 13

TRANSPORT SERVICE AN APP NEEDS?TRANSPORT SERVICE AN APP NEEDS?
Data integrity

some apps (e.g., �le transfer, web transactions) require 100%
data integrity

other apps (e.g., audio) can tolerate some loss

4 . 14

TRANSPORT SERVICE AN APP NEEDS?TRANSPORT SERVICE AN APP NEEDS?
Timing

some apps (e.g., Internet telephony, interactive games) require
low delay to be "effective"

4 . 15

TRANSPORT SERVICE AN APP NEEDS?TRANSPORT SERVICE AN APP NEEDS?
Throughput

some apps (e.g., multimedia) require minimum amount of
throughput to be "effective"

other apps (“elastic apps”) make use of whatever throughput
they get

4 . 16

TRANSPORT SERVICE AN APP NEEDS?TRANSPORT SERVICE AN APP NEEDS?
Security

encryption, data integrity, …

4 . 17

TRANSPORT SERVICE REQUIREMENTSTRANSPORT SERVICE REQUIREMENTS
Application Data loss Throughput Time sensitive

�le transfer no loss elastic no

e-mail no loss elastic no

Web
documents

no loss elastic no

4 . 18

TRANSPORT SERVICE REQUIREMENTSTRANSPORT SERVICE REQUIREMENTS
Application Data loss Throughput Time sensitive

real-time
audio/video

loss-tolerant audio: 5kbps-
1Mbps,
video:10kbps-
5Mbps

yes, 100’s
msec

stored
audio/video

loss-tolerant same as above yes, few secs

4 . 19

TRANSPORT SERVICE REQUIREMENTSTRANSPORT SERVICE REQUIREMENTS
Application Data loss Throughput Time sensitive

interactive
games

loss-tolerant few kbps up yes, 100’s
msec

text messaging no loss elastic yes and no

4 . 20

INTERNET TRANSPORT PROTOCOLS SERVICESINTERNET TRANSPORT PROTOCOLS SERVICES

5 . 1

TCP SERVICETCP SERVICE
Reliable transport between sending and receiving process

Flow control: sender won’t overwhelm receiver

Congestion control: throttle sender when network overloaded

Does not provide: timing, minimum throughput guarantee, security

Connection-oriented: setup required between client and server
processes

5 . 2

UDP SERVICEUDP SERVICE
Unreliable data transfer between sending and receiving process

Does not provide: reliability, �ow control, congestion control,
timing, throughput guarantee, security, orconnection setup,

Q: why bother? - Why is there a UDP?

5 . 3

APPLICATION, TRANSPORT PROTOCOLSAPPLICATION, TRANSPORT PROTOCOLS
Application Application layer

protocol
underlying
transport protocol

e-mail SMTP [RFC 2821] TCP

remote terminal
access

Telnet [RFC 854] TCP

Web HTTP [RFC 2616] TCP

5 . 4

APPLICATION, TRANSPORT PROTOCOLSAPPLICATION, TRANSPORT PROTOCOLS
Application Application layer

protocol
underlying
transport protocol

�le transfer FTP [RFC 959] TCP

streaming
multimedia

HTTP (e.g.,
YouTube), RTP [RFC
1889]

TCP or UDP

Internet telephony SIP, RTP, proprietary
(e.g., Skype)

TCP or UDP

5 . 5

SECURING TCPSECURING TCP
TCP & UDP

no encryption

cleartext passwords sent into socket traverse Internet in
cleartext

6 . 1

SECURING TCPSECURING TCP
SSL (TLS)

provides encrypted TCP connection

data integrity

end-point authentication

SSL is at app layer

Apps use SSL libraries, which "talk" to TCP

SSL socket API

cleartext passwds sent into socket traverse Internet encrypted

We cover this in chapter 8

6 . 2

WEB AND HTTPWEB AND HTTP
First, a quick intro…

web page consists of objects

object can be HTML �le, JPEG image, Java applet, audio �le,…

web page consists of base HTML-�le which includes several
referenced objects

each object is addressable by a URL, e.g.,

7 . 1

HTTP OVERVIEWHTTP OVERVIEW
HTTP: hypertext transfer protocol

7 . 2

HTTP OVERVIEWHTTP OVERVIEW
HTTP: hypertext transfer protocol

Web’s application layer protocol

Client/server model

client: browser that requests, receives, (using HTTP protocol)
and “displays” Web objects

server: Web server sends (using HTTP protocol) objects in
response to requests

7 . 3

HTTP OVERVIEWHTTP OVERVIEW
uses TCP:

client initiates TCP connection (creates socket) to server, port 80

server accepts TCP connection from client

HTTP messages (application-layer protocol messages) exchanged
between browser (HTTP client) and Web server (HTTP server)

TCP connection closed

HTTP is “stateless”

server maintains no information about past client requests

7 . 4

HTTP OVERVIEWHTTP OVERVIEW
protocols that maintain “state” are complex!

past history (state) must be maintained

if server/client crashes, their views of “state” may be
inconsistent, must be reconciled



7 . 5

HTTP CONNECTIONSHTTP CONNECTIONS
non-persistent HTTP

at most one object sent over TCP connection

connection then closed

downloading multiple objects required multiple connections

persistent HTTP

multiple objects can be sent over single TCP connection between
client, server

7 . 6

NON-PERSISTENT HTTPNON-PERSISTENT HTTP
suppose user enters URL:

www.someSchool.edu/someDepartment/index.html

(contains text, references to 10 jpeg images)

7 . 7

NON-PERSISTENT HTTP (CONT.)NON-PERSISTENT HTTP (CONT.)

7 . 8

NON-PERSISTENT HTTP: RESPONSE TIMENON-PERSISTENT HTTP: RESPONSE TIME
RTT (de�nition): time for a small packet to travel from client to
server and back

HTTP response time

one RTT to initiate TCP connection

one RTT for HTTP request and �rst few bytes of HTTP
response to return

�le transmission time

non-persistent HTTP response time = 2RTT + �le
transmission time





7 . 9

NON-PERSISTENT HTTP: RESPONSE TIMENON-PERSISTENT HTTP: RESPONSE TIME

7 . 10

NON-PERSISTENT HTTPNON-PERSISTENT HTTP
Non-persistent HTTP issues:

requires 2 RTTs per object

OS overhead for each TCP connection

browsers often open parallel TCP connections to fetch
referenced objects



7 . 11

PERSISTENT HTTPPERSISTENT HTTP
Persistent HTTP:

server leaves connection open after sending response

subsequent HTTP messages between same client/server
sent over open connection

client sends requests as soon as it encounters a referenced
object

as little as one RTT for all the referenced objects



7 . 12

HTTP REQUEST MESSAGEHTTP REQUEST MESSAGE
two types of HTTP messages: request, response

HTTP request message: ASCII (human-readable format)

7 . 13

HTTP REQUEST MESSAGE: GENERAL FORMATHTTP REQUEST MESSAGE: GENERAL FORMAT

7 . 14

UPLOADING FORM INPUTUPLOADING FORM INPUT
POST method:

web page often includes form input

input is uploaded to server in entity body

URL method:

uses GET method

input is uploaded in URL �eld of request line:
www.somesite.com/animalsearch?

monkeys=4&banana=2





7 . 15

METHOD TYPESMETHOD TYPES
HTTP/1.0:

GET

POST

HEAD

asks server to leave requested object out of response



7 . 16

METHOD TYPESMETHOD TYPES
HTTP/1.1:

GET, POST, HEAD

PUT

uploads �le in entity body to path speci�ed in URL �eld

DELETE

deletes �le speci�ed in the URL �eld



7 . 17

HTTP RESPONSE MESSAGEHTTP RESPONSE MESSAGE

7 . 18

HTTP RESPONSE STATUS CODESHTTP RESPONSE STATUS CODES
status code appears in 1st line in server-to-client response
message.

some sample codes:

200 OK request succeeded, requested object later in this msg

301 Moved Permanently requested object moved, new location
speci�ed later in this msg (Location:)

400 Bad Request request msg not understood by server

404 Not Found requested document not found on this server

505 HTTP Version Not Supported
7 . 19

HTTP RESPONSE STATUS CODESHTTP RESPONSE STATUS CODES
400’s: You fucked up

500’s: We fucked up

Take a look at code



 418

7 . 20

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

TRYING OUT HTTP (CLIENT SIDE) FOR YOURSELFTRYING OUT HTTP (CLIENT SIDE) FOR YOURSELF
Telnet to your favorite Web server: telnet imada.sdu.dk 80
opens TCP connection to port 80 (default HTTP server port) at
imada.sdu.dk.
anything typed in sent to port 80 at imada.sdu.dk

type in a GET HTTP request:
GET /~jamik/ HTTP/1.1

Host: imada.sdu.dk

by typing this in (hit carriage return twice), you send this minimal
(but complete) GET request to HTTP server

look at response message sent by HTTP server!

7 . 21

USER-SERVER STATE: COOKIESUSER-SERVER STATE: COOKIES
many Web sites use cookies

four components:

cookie header line of HTTP response message

cookie header line in next HTTP request message

cookie �le kept on user’s host, managed by user’s browser

back-end database at Web site

7 . 22

COOKIES: KEEPING “STATE”COOKIES: KEEPING “STATE”

7 . 23

COOKIES (CONTINUED)COOKIES (CONTINUED)
What cookies can be used for:

authorization

shopping carts

recommendations

user session state (Web e-mail)

7 . 24

HOW TO KEEP "STATE"HOW TO KEEP "STATE"
protocol endpoints: maintain state at sender/receiver over
multiple transactions

cookies: http messages carry state

cookies and privacy:

cookies permit sites to learn a lot about you

you may supply name and e-mail to sites



7 . 25

HTTP/2HTTP/2
The HTTP/2 speci�cation was published as RFC 7540 in May 2015

Most major browsers added HTTP/2 support by the end of 2015

Last update: HTTP 1.1 was in 1997

Material from RFC 7540 and https://en.wikipedia.org/wiki/HTTP/2

8 . 1

https://en.wikipedia.org/wiki/HTTP/2

GOALS FOR HTTP/2GOALS FOR HTTP/2
Negotiation mechanism that allows clients and servers to elect to
use HTTP 1.1, 2.0, or potentially other non-HTTP protocols.

Maintain high-level compatibility with HTTP 1.1 (for example with
methods, status codes, and URIs, and most header �elds)

Decrease latency to improve page load speed in web browsers by
considering:

Data compression of HTTP headers

Pipelining of requests

Fixing the head-of-line blocking problem in HTTP 1.x

Multiplexing multiple requests over a single TCP connection
8 . 2

HEAD-OF-LINE BLOCKINGHEAD-OF-LINE BLOCKING
An issue for HTTP 1.0 and HTTP 1.1

Requests must be treated in order

Means that requests can wait behind a slow or large request

HTTP 1.1 introduced pipelining to partially �x the issue

Many clients also tried to create multiple connections to increase
speed (unfair to other better behaved applications)

8 . 3

PIPELININGPIPELINING

8 . 4

STREAMS AND MULTIPLEXINGSTREAMS AND MULTIPLEXING
All communication in HTTP/2 is done through streams

The client can create streams with odd numbers 1, 3, 5 and so on

The server can create streams with even numbers 2, 4, 6 and so on

0 is used for connection control messages

Even if one stream is blocked waiting for a slow or large request
the others can still carry on

8 . 5

FTPFTP

9 . 1

FILE TRANSFER PROTOCOLFILE TRANSFER PROTOCOL

transfer �le to/from remote host

client/server model

client: side that initiates transfer (either to/from remote)

server: remote host

ftp: RFC 959

ftp server: port 21
9 . 2

SEPARATE CONTROL, DATA CONNECTIONSSEPARATE CONTROL, DATA CONNECTIONS
FTP client contacts FTP server at port 21, using TCP

client authorized over control connection

client browses remote directory, sends commands over control
connection

when server receives �le transfer command, server opens 2nd TCP
data connection (for �le) to client

after transferring one �le, server closes data connection

9 . 3

SEPARATE CONTROL, DATA CONNECTIONSSEPARATE CONTROL, DATA CONNECTIONS

server opens another TCP data connection to transfer another �le

control connection: “out of band”

FTP server maintains “state”: current directory, earlier
authentication

9 . 4

FTP COMMANDS, RESPONSESFTP COMMANDS, RESPONSES
sample commands:

sent as ASCII text over control channel

USER username

PASS password

LIST return list of �le in current directory

RETR filename retrieves (gets) �le

STOR filename stores (puts) �le onto remote host



9 . 5

FTP COMMANDS, RESPONSESFTP COMMANDS, RESPONSES
sample return codes

status code and phrase (as in HTTP)

331 Username OK, password required

125 data connection already open; transfer

starting

425 Can’t open data connection

452 Error writing file



9 . 6

ELECTRONIC MAILELECTRONIC MAIL

10 . 1

ELECTRONIC MAILELECTRONIC MAIL
Three major components:

1. user agents

2. mail servers

3. simple mail transfer protocol: SMTP

10 . 2

USER AGENTUSER AGENT
a.k.a. “mail reader”

composing, editing, reading mail messages

e.g., Outlook, Thunderbird, iPhone mail client

outgoing, incoming messages stored on server

10 . 3

MAIL SERVERSMAIL SERVERS
mail servers:

mailbox contains incoming messages for user

message queue of outgoing (to be sent) mail messages

SMTP protocol between mail servers to send email messages

client: sending mail server

“server”: receiving mail server

10 . 4

MAIL SERVERSMAIL SERVERS

10 . 5

SMTP [RFC 2821]SMTP [RFC 2821]

10 . 6

SCENARIO: ALICE SENDS MESSAGE TO BOBSCENARIO: ALICE SENDS MESSAGE TO BOB
1. Alice uses UA to compose message “to”

2. Alice’s UA sends message to her mail server; message placed in
message queue

3. client side of SMTP opens TCP connection with Bob’s mail server

4. SMTP client sends Alice’s message over the TCP connection

5. Bob’s mail server places the message in Bob’s mailbox

6. Bob invokes his user agent to read message

bob@someschool.edu

10 . 7

mailto:bob@someschool.edu

SAMPLE SMTP INTERACTIONSAMPLE SMTP INTERACTION
 S: 220 hamburger.edu

 C: HELO crepes.fr

 S: 250 Hello crepes.fr, pleased to meet you

 C: MAIL FROM: <alice@crepes.fr>

 S: 250 alice@crepes.fr... Sender ok

 C: RCPT TO: <bob@hamburger.edu>

 S: 250 bob@hamburger.edu ... Recipient ok

 C: DATA

 S: 354 Enter mail, end with "." on a line by itself

 C: Do you like ketchup?

 C: How about pickles?

 C: .

 S: 250 Message accepted for delivery

 C: QUIT

 S: 221 hamburger.edu closing connection

10 . 8

TRY SMTP INTERACTION FOR YOURSELF:TRY SMTP INTERACTION FOR YOURSELF:
telnet servername 25

see 220 reply from server

enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands

above lets you send email without using email client (reader)

10 . 9

SMTP: FINAL WORDSSMTP: FINAL WORDS
SMTP uses persistent connections

SMTP requires message (header & body) to be in 7-bit ASCII

SMTP server uses CRLF.CRLF to determine end of message

10 . 10

SMTP: FINAL WORDSSMTP: FINAL WORDS
comparison with HTTP:

HTTP: pull

SMTP: push

both have ASCII command/response interaction, status codes

HTTP: each object encapsulated in its own response msg

SMTP: multiple objects sent in multipart msg

10 . 11

MAIL MESSAGE FORMATMAIL MESSAGE FORMAT
SMTP: protocol for exchanging email msgs

RFC 822: standard for text message format:

header lines, e.g.,

To:

From:

Subject:

different from SMTP MAIL FROM, RCPT TO: commands!

Body: the “message”

ASCII characters only
10 . 12

MAIL MESSAGE FORMATMAIL MESSAGE FORMAT

10 . 13

MAIL ACCESS PROTOCOLSMAIL ACCESS PROTOCOLS

SMTP: delivery/storage to receiver’s server

Mail access protocol: retrieval from server

POP: Post Of�ce Protocol [RFC 1939]: authorization, download

IMAP: Internet Mail Access Protocol [RFC 1730]: more features,
including manipulation of stored msgs on server

HTTP: gmail, Hotmail, Yahoo! Mail, etc.

10 . 14

POP3 PROTOCOLPOP3 PROTOCOL
Authorization phase

client commands:

user: declare username

pass: password

server responses

+OK

-ERR

10 . 15

POP3 PROTOCOLPOP3 PROTOCOL
Transaction phase, client:

list: list message numbers

retr: retrieve message by number

dele: delete

quit

10 . 16

POP3 PROTOCOLPOP3 PROTOCOL

10 . 17

POP3 (MORE)POP3 (MORE)
More about POP3

previous example uses POP3 “download and delete” mode

Bob cannot re-read e-mail if he changes client

POP3 “download-and-keep”: copies of messages on different
clients

POP3 is stateless across sessions

10 . 18

IMAPIMAP
keeps all messages in one place: at server

allows user to organize messages in folders

keeps user state across sessions:

names of folders and mappings between message IDs and folder
name

10 . 19

DNSDNS

11 . 1

DOMAIN NAME SYSTEMDOMAIN NAME SYSTEM
people: many identi�ers:
SSN, name, passport number

Internet hosts, routers: IP address (32 bit) - used for addressing
datagrams.
"name", e.g., www.yahoo.com - used by humans

Q: how to map between IP address and name, and vice versa ?

11 . 2

DOMAIN NAME SYSTEMDOMAIN NAME SYSTEM
Domain Name System:

distributed database implemented in hierarchy of many
name servers

application-layer protocol: hosts, name servers
communicate to resolve names (address/name translation)

note: core Internet function, implemented as application-
layer protocol

complexity at network’s “edge”



11 . 3

DNS: SERVICES, STRUCTUREDNS: SERVICES, STRUCTURE
DNS services

hostname to IP address translation

host aliasing

canonical, alias names

mail server aliasing

load distribution

replicated Web servers: many IP addresses correspond to one
name

11 . 4

DNS: SERVICES, STRUCTUREDNS: SERVICES, STRUCTURE
Why not centralize DNS?

single point of failure

traf�c volume

distant centralized database

maintenance

A: doesn’t scale!

11 . 5

DNS: A DISTRIBUTED, HIERARCHICAL DATABASEDNS: A DISTRIBUTED, HIERARCHICAL DATABASE

client wants IP for www.amazon.com; 1st approx:

client queries root server to �nd com DNS server

client queries .com DNS server to get amazon.com DNS server

client queries amazon.com DNS server to get IP address for
www.amazon.com

11 . 6

DNS: ROOT NAME SERVERSDNS: ROOT NAME SERVERS

11 . 7

DNS: ROOT NAME SERVERSDNS: ROOT NAME SERVERS
contacted by local name server that can not resolve name

root name server:

contacts authoritative name server if name mapping not known

gets mapping

returns mapping to local name server

11 . 8

TLD SERVERSTLD SERVERS
top-level domain (TLD) servers:

responsible for com, org, net, edu, aero, jobs, museums, and all top-
level country domains, e.g.: uk, fr, ca, jp

Network Solutions maintains servers for .com TLD

Educause for .edu TLD



11 . 9

AUTHORITATIVE SERVERSAUTHORITATIVE SERVERS
authoritative DNS servers:

organization’s own DNS server(s), providing authoritative
hostname to IP mappings for organization’s named hosts

can be maintained by organization or service provider



11 . 10

LOCAL DNS NAME SERVERLOCAL DNS NAME SERVER
does not strictly belong to hierarchy

each ISP (residential ISP, company, university) has one

also called “default name server”

when host makes DNS query, query is sent to its local DNS server

has local cache of recent name-to-address translation pairs (but
may be out of date!)

acts as proxy, forwards query into hierarchy

Is there security considerations with a local DNS server

11 . 11

DNS NAME RESOLUTION EXAMPLEDNS NAME RESOLUTION EXAMPLE
host at cis.poly.edu wants IP address for gaia.cs.umass.edu

11 . 12

ITERATED QUERY:ITERATED QUERY:
contacted server replies with name of server to contact

“I don’t know this name, but ask this server”

11 . 13

RECURSIVE QUERYRECURSIVE QUERY
puts burden of name resolution on contacted name server

heavy load at upper levels of hierarchy?

11 . 14

DNS NAME RESOLUTION EXAMPLEDNS NAME RESOLUTION EXAMPLE
Demo:

nslookup

11 . 15

DNS: CACHING, UPDATING RECORDSDNS: CACHING, UPDATING RECORDS
Once (any) name server learns mapping, it caches mapping

cache entries timeout (disappear) after some time (TTL)

TLD servers typically cached in local name servers

thus root name servers not often visited

cached entries may be out-of-date (best effort name-to-address
translation!)

if name host changes IP address, may not be known Internet-
wide until all TTLs expire

update/notify mechanisms proposed IETF standard

RFC 2136
11 . 16

DNS RECORDSDNS RECORDS
DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)



11 . 17

DNS RECORDSDNS RECORDS
[type=A]

name is hostname

value is IP address

[type=NS]

name is domain (e.g., foo.com)

value is hostname of authoritative name server for this domain

11 . 18

DNS RECORDSDNS RECORDS
[type=CNAME]

name is alias name for some “canonical” (the real) name

www.ibm.com is really servereast.backup2.ibm.com

value is canonical name

[type=MX]

value is name of mailserver associated with name

11 . 19

DNS NAME RESOLUTION EXAMPLEDNS NAME RESOLUTION EXAMPLE
Demo:

dig

11 . 20

DNS PROTOCOL, MESSAGESDNS PROTOCOL, MESSAGES
query and reply messages, both with same message format

Message header

identi�cation: 16 bit # for query, reply to query uses same #

�ags:

query or reply

recursion desired

recursion available

reply is authoritative

11 . 21

DNS PROTOCOL, MESSAGESDNS PROTOCOL, MESSAGES

11 . 22

INSERTING RECORDS INTO DNSINSERTING RECORDS INTO DNS
example: new startup “Network Utopia”

register name networkuptopia.com at DNS registrar (e.g., Network
Solutions)

provide names, IP addresses of authoritative name server
(primary and secondary)

registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

create authoritative server type A record for
www.networkuptopia.com; type NS record for networkutopia.com

11 . 23

ATTACKING DNSATTACKING DNS
DDoS attacks

Bombard root servers with traf�c

Not successful to date

Traf�c Filtering

Local DNS servers cache IPs of TLD servers, allowing root server
bypass

Bombard TLD servers

Potentially more dangerous

11 . 24

ATTACKING DNSATTACKING DNS
Redirect attacks

Man-in-middle: Intercept queries

DNS poisoning: Send bogus replies to DNS server, which caches

11 . 25

ATTACKING DNSATTACKING DNS
Exploit DNS for DDoS

Send queries with spoofed source address: target IP

Requires ampli�cation

11 . 26

P2P APPLICATIONSP2P APPLICATIONS

12 . 1

PURE P2P ARCHITECTUREPURE P2P ARCHITECTURE
no always-on server

arbitrary end systems directly communicate

peers are intermittently connected and change IP addresses

12 . 2

PURE P2P ARCHITECTUREPURE P2P ARCHITECTURE
examples:

�le distribution (BitTorrent)

Streaming (KanKan)

VoIP (Skype)

12 . 3

PURE P2P ARCHITECTUREPURE P2P ARCHITECTURE

12 . 4

FILE DISTRIBUTION: CLIENT-SERVER VS P2PFILE DISTRIBUTION: CLIENT-SERVER VS P2P
Question: how much time to distribute �le (size F) from one
server to N peers?

peer upload/download capacity is limited resource



12 . 5

FILE DISTRIBUTION TIME: CLIENT-SERVERFILE DISTRIBUTION TIME: CLIENT-SERVER
Server transmission: must sequentially send (upload) N �le
copies:

time to send one copy: F/us

time to send N copies: NF/us

client: each client must download �le copy

dmin = min client download rate

min client download time: F/dmin





12 . 6

FILE DISTRIBUTION TIME: CLIENT-SERVERFILE DISTRIBUTION TIME: CLIENT-SERVER

time to distribute F to N clients using client-server approach

Dc-s > max(NF/us ,F/dmin)

Notice it increases linearly in N



12 . 7

FILE DISTRIBUTION TIME: P2PFILE DISTRIBUTION TIME: P2P
server transmission: must upload at least one copy

time to send one copy: F/us

client: each client must download �le copy

min client download time: F/dmin

clients as aggregate must download NF bits







max upload rate (limiting max download rate) is us + Σ ui

time to distribute F to N clients using P2P approach

DP2P > max(F/us , F/dmin , NF/(us + Σ ui))



12 . 8

CLIENT-SERVER VS. P2P: EXAMPLECLIENT-SERVER VS. P2P: EXAMPLE
client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

12 . 9

P2P FILE DISTRIBUTION: BITTORRENTP2P FILE DISTRIBUTION: BITTORRENT
�le divided into 256Kb chunks

peers in torrent send/receive �le chunks

12 . 10

P2P FILE DISTRIBUTION: BITTORRENTP2P FILE DISTRIBUTION: BITTORRENT
peer joining torrent:

has no chunks, but will accumulate them over time from other
peers

registers with tracker to get list of peers, connects to subset of
peers (“neighbors”)

12 . 11

P2P FILE DISTRIBUTION: BITTORRENTP2P FILE DISTRIBUTION: BITTORRENT
while downloading, peer uploads chunks to other peers

peer may change peers with whom it exchanges chunks

churn: peers may come and go

once peer has entire �le, it may (sel�shly) leave or (altruistically)
remain in torrent

12 . 12

BITTORRENT: REQUESTING, SENDING FILE CHUNKSBITTORRENT: REQUESTING, SENDING FILE CHUNKS
requesting chunks:

at any given time, different peers have different subsets of �le
chunks

periodically, Alice asks each peer for list of chunks that they have

Alice requests missing chunks from peers, rarest �rst



12 . 13

BITTORRENT: REQUESTING, SENDING FILE CHUNKSBITTORRENT: REQUESTING, SENDING FILE CHUNKS
sending chunks: tit-for-tat

Alice sends chunks to those four peers currently sending her
chunks at highest rate

other peers are choked by Alice (do not receive chunks from her)

re-evaluate top 4 every 10 secs

every 30 secs: randomly select another peer, starts sending chunks

"optimistically unchoke" this peer

newly chosen peer may join top 4



12 . 14

BITTORRENT: TIT-FOR-TATBITTORRENT: TIT-FOR-TAT
Alice “optimistically unchokes” Bob

Alice becomes one of Bob’s top-four providers; Bob reciprocates

Bob becomes one of Alice’s top-four providers

12 . 15

BITTORRENT: TIT-FOR-TATBITTORRENT: TIT-FOR-TAT

higher upload rate: �nd better trading partners, get �le faster !

12 . 16

SOCKET PROGRAMMING WITH UDP AND TCPSOCKET PROGRAMMING WITH UDP AND TCP

13 . 1

SOCKET PROGRAMMINGSOCKET PROGRAMMING
goal: Learn how to build client/server applications that
communicate using sockets
socket: door between application process and end-end-
transport protocol





13 . 2

SOCKET PROGRAMMINGSOCKET PROGRAMMING
Two socket types for two transport services:

UDP: unreliable datagram

TCP: reliable, byte stream-oriented

Application Example:

13 . 3

SOCKET PROGRAMMING WITH UDPSOCKET PROGRAMMING WITH UDP
UDP: no “connection” between client and server

no handshaking before sending data

sender explicitly attaches IP destination address and port number
to each packet

rcvr extracts sender IP address and port \# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint: UDP provides unreliable transfer of
groups of bytes (“datagrams”) between client and server



13 . 4

SOCKETS IN JAVASOCKETS IN JAVA
UDP Server

DatagramSocket socket = new DatagramSocket(12000);

System.out.println("Waiting for packets");

byte[] buf = new byte[1024];

DatagramPacket packet = new DatagramPacket(buf, buf.length);

socket.receive(packet);

String payload = new String(packet.getData(), 0, packet.getLength());

String responsePayload = payload.toUpperCase();

InetAddress address = packet.getAddress();

int port = packet.getPort();

buf = responsePayload.getBytes();

packet = new DatagramPacket(buf, buf.length, address, port);

socket.send(packet);

13 . 5

SOCKETS IN JAVASOCKETS IN JAVA
UDP Client

InetAddress address = InetAddress.getLoopbackAddress();

Integer port = 12000;

DatagramSocket socket = new DatagramSocket();

System.out.println("Input lowercase sentence:\n");

Scanner scanner = new Scanner(System.in);

String message = scanner.nextLine();

byte[] buf = message.getBytes();

DatagramPacket packet = new DatagramPacket(buf, buf.length, address, port);

socket.send(packet);

packet = new DatagramPacket(buf, buf.length);

socket.receive(packet);

String received = new String(packet.getData(), 0, packet.getLength());

System.out.println("Received:" + received);

13 . 6

SOCKET PROGRAMMING WITH TCPSOCKET PROGRAMMING WITH TCP
Client must contact server

server process must �rst be running

server must have created socket (door) that welcomes client’s
contact

13 . 7

SOCKET PROGRAMMING WITH TCPSOCKET PROGRAMMING WITH TCP
client contacts server by:

Creating TCP socket, specifying IP address, port number of server
process

when client creates socket: client TCP establishes connection to
server TCP

when contacted by client, server TCP creates new socket for
server process to communicate with that particular client

allows server to talk with multiple clients

source port numbers used to distinguish clients (more in Chap 3)

13 . 8

SOCKET PROGRAMMING WITH TCPSOCKET PROGRAMMING WITH TCP
Application viewpoint: TCP provides reliable, in-order byte-
stream transfer (“pipe”) between client and server



13 . 9

SOCKETS IN JAVASOCKETS IN JAVA
TCPServer

ServerSocket serverSocket = new ServerSocket(12000);

Socket socket = serverSocket.accept();

boolean autoflush = true;

PrintWriter out = new PrintWriter(socket.getOutputStream(), autoflush);

BufferedReader in = new BufferedReader(

 new InputStreamReader(socket.getInputStream())

);

// read the response

boolean loop = true;

StringBuilder sb = new StringBuilder(8096);

while (loop) {

 if (in.ready()) {

 int i = 0;

 while (i != '\n') {

 i = in.read(); sb.append((char) i);

 }

 loop = false;

 }

}

String payload = sb.toString();

out.println(payload.toUpperCase());

out.flush();

out.close();

socket.close();

serverSocket.close();

13 . 10

SOCKETS IN JAVASOCKETS IN JAVA
TCPClient

Socket socket = new Socket("127.0.0.1", 12000);

boolean autoflush = true;

PrintWriter out = new PrintWriter(socket.getOutputStream(), autoflush);

BufferedReader in = new BufferedReader(

 new InputStreamReader(socket.getInputStream())

);

System.out.println("Input lowercase sentence:\n");

Scanner scanner = new Scanner(System.in);

String message = scanner.nextLine();

out.println(message);

out.println();

out.flush();

// read the response

String response = in.readLine();

System.out.println("Received:" + response);

out.close();

socket.close();

13 . 11

VIDEO STREAMING AND CONTENT DELIVERYVIDEO STREAMING AND CONTENT DELIVERY
NETWORKSNETWORKS

14 . 1

INTERNET VIDEO - CONTEXTINTERNET VIDEO - CONTEXT
Video traf�c: major consumer of Internet bandwidth

Net�ix: 37% of downstream residential ISP traf�c

YouTube: 16% of downstream residential ISP traf�c

~1B YouTube users, ~75M Net�ix users

14 . 2

INTERNET VIDEO - CONTEXTINTERNET VIDEO - CONTEXT
Challenge: scale - how to reach ~1B users?

Single mega-video server won’t work (why?)

Challenge: heterogeneity

different users have different capabilities (e.g., wired versus
mobile; bandwidth rich versus bandwidth poor)

Solution: distributed, application-level infrastructure

14 . 3

MULTIMEDIA: VIDEOMULTIMEDIA: VIDEO
Video: sequence of images displayed at constant rate

e.g., 24 images/sec

Digital image: array of pixels

each pixel represented by bits

Coding: use redundancy within and between images to decrease
number of bits used to encode image

spatial (within image)

temporal (from one image to next)

14 . 4

MULTIMEDIA: VIDEOMULTIMEDIA: VIDEO

14 . 5

MULTIMEDIA: VIDEOMULTIMEDIA: VIDEO
CBR (constant bit rate): video encoding rate �xed

VBR (variable bit rate): video encoding rate changes as amount of
spatial, temporal coding changes

Examples:

MPEG 1 (CD-ROM) 1.5 Mbps

MPEG2 (DVD) 3-6 Mbps

MPEG4 (often used in Internet, < 1 Mbps)

4K quality (> 10Mbps)

14 . 6

STREAMING STORED VIDEOSTREAMING STORED VIDEO
Simple scenario

14 . 7

MULTIMEDIA: VIDEOMULTIMEDIA: VIDEO
Single 2Mbps video with 67 min duration ⇒ 1 GB storage and traf�c

Most important: Average throughput >= bit rate of compressed
video



14 . 8

HTTP STREAMING AND DASHHTTP STREAMING AND DASH
DASH: Dynamic, Adaptive Streaming over HTTP

14 . 9

DASH - SERVERDASH - SERVER
Divides video �le into multiple chunks

Each chunk stored, encoded at different rates

Manifest �le: provides URLs for different chunks

14 . 10

DASH - CLIENTDASH - CLIENT
Periodically measures server-to-client bandwidth

Consulting manifest, requests one chunk at a time

Chooses maximum coding rate sustainable given current
bandwidth

Can choose different coding rates at different points in time
(depending on available bandwidth at time)

14 . 11

DASHDASH
“Intelligence” at client: client determines

When to request chunk (so that buffer starvation, or over�ow
does not occur)

What encoding rate to request (higher quality when more
bandwidth available)

Where to request chunk (can request from URL server that is
“close” to client or has high available bandwidth)

14 . 12

CONTENT DISTRIBUTION NETWORKSCONTENT DISTRIBUTION NETWORKS
Challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

14 . 13

CONTENT DISTRIBUTION NETWORKSCONTENT DISTRIBUTION NETWORKS
Option 1: single, large “mega-server”

single point of failure

point of network congestion

long path to distant clients

multiple copies of video sent over outgoing link

1. quite simply: this solution doesn’t scale

14 . 14

CONTENT DISTRIBUTION NETWORKSCONTENT DISTRIBUTION NETWORKS
Option 2: store/serve multiple copies of videos at multiple

geographically distributed sites (CDN)

Enter deep: push CDN servers deep into many access networks

close to users

used by Akamai, 1700 locations

Bring home: smaller number (10’s) of larger clusters in POPs near
(but not within) access networks

used by Limelight

14 . 15

CDN OPERATIONCDN OPERATION
CDN: stores copies of content at CDN nodes

e.g. Net�ix stores copies of MadMen

subscriber requests content from CDN

directed to nearby copy, retrieves content

may choose different copy if network path congested

14 . 16

CDN OPERATIONCDN OPERATION

14 . 17

GOOGLE NETWORK INFRASTRUCTUREGOOGLE NETWORK INFRASTRUCTURE
14 Mega data centers (2016)

Each ~100.000 servers

Estimated 50 clusters in IXP

Each 100-500 servers

Many hundreds of "Enter-deep" clusters located in access ISP

Typically 10 servers in rack

All networked with Googles private network - largely independent of
public internet

14 . 18

CDN CONTENT ACCESSCDN CONTENT ACCESS
Bob (client) requests video

video stored in CDN at

http://netcinema.com/6Y7B23V

http://KingCDN.com/NetC6y&B23V

14 . 19

http://netcinema.com/6Y7B23V
http://kingcdn.com/NetC6y&B23V

CDN CONTENT ACCESSCDN CONTENT ACCESS

14 . 20

CDN - OVER THE TOPCDN - OVER THE TOP

14 . 21

CDN - OVER THE TOPCDN - OVER THE TOP
OTT challenges: coping with a congested Internet

from which CDN node to retrieve content?

viewer behavior in presence of congestion?

what content to place in which CDN node?

14 . 22

CLUSTER SELECTION STRATEGIESCLUSTER SELECTION STRATEGIES
Geographically closest: Using geo-location database → Map Local

DNS to location

Ok for many users

But if local DNS is not really local ⇒ poor performance

Does not take into account network hops or network
latency/conguestion

Real-time measurements: Performed periodically by the CDN

Takes into account current traf�c conditions

Drawback: DNS might not reply to such probes
14 . 23

CASE STUDIES - NETFLIX, YOUBE AND KANKANCASE STUDIES - NETFLIX, YOUBE AND KANKAN

14 . 24

CDN EXAMPLE - NETFLIXCDN EXAMPLE - NETFLIX
Runs website and more on Amazon Cloud

Content ingestion: Receive master movie and upload

Content processing: For DASH

Uploading versions to CDN: Has their own CDN (Akamai for
website)

14 . 25

CDN EXAMPLE - NETFLIXCDN EXAMPLE - NETFLIX

14 . 26

CDN EXAMPLE - NETFLIXCDN EXAMPLE - NETFLIX
Server racks at

50 IXP locations

Hundreds of ISPs

Pushes to racks during off-peak periods

Net�ix software tells which CDN server to use

14 . 27

CDN EXAMPLE - YOUTUBECDN EXAMPLE - YOUTUBE
300 hours of video uploaded every minute

Several billion video views a day

Uses pull-caching

Directs user to server where RTT is lowest

Requieres user to select version/quality (Not DASH)

Processes every video uploaded (making different versions)

14 . 28

CDN EXAMPLE - KANKANCDN EXAMPLE - KANKAN
Net�ix and Google setup costly (servers, bandwith)

Kankan uses P2P delivery (along with client-server)

Few 100’s servers within China - pushes video to these

Start videos from client-server, gradually use P2P when
downloaded

14 . 29

QUESTIONSQUESTIONS

15

