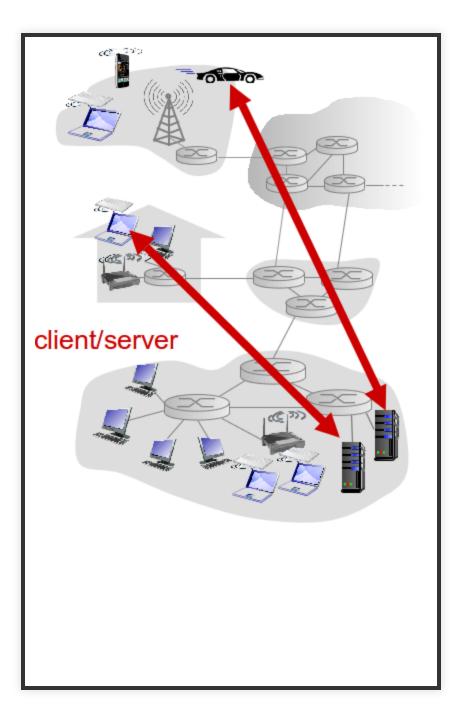

GOALS

PRINCIPLES OF NETWORK APPLICATIONS

SOME NETWORK APPLICATIONS

- e-mail & web
- remote login
- P2P file sharing
- multi-user network games
- streaming stored video (YouTube, Hulu, Netflix)
- voice over IP (e.g., Skype)
- real-time video conferencing
- search

CREATING A NETWORK APP


CREATING A NETWORK APP

- Write programs that:
 - run on (different) end systems
 - communicate over network
 - e.g., web server software communicates with browser software
- No need to write software for network-core devices
 - network-core devices do not run user applications
 - applications on end systems allows for rapid app development, propagation

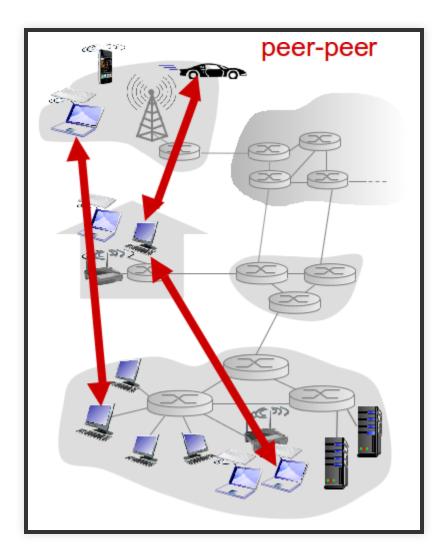
APPLICATION ARCHITECTURES

- client-server
- peer-to-peer (P2P)

CLIENT-SERVER ARCHITECTURE

CLIENT-SERVER ARCHITECTURE

Server


- always-on host
- permanent IP address
- data centers for scaling

CLIENT-SERVER ARCHITECTURE

O clients

- communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other

P2P ARCHITECTURE

P2P ARCHITECTURE

- no always-on server
- arbitrary end systems directly communicate
- peers request service from other peers, provide service in return to other peers
 - self scalability new peers bring new service capacity, as well as new service demands
- peers are intermittently connected and change IP addresses
 - complex management

PROCESSES COMMUNICATING

Process

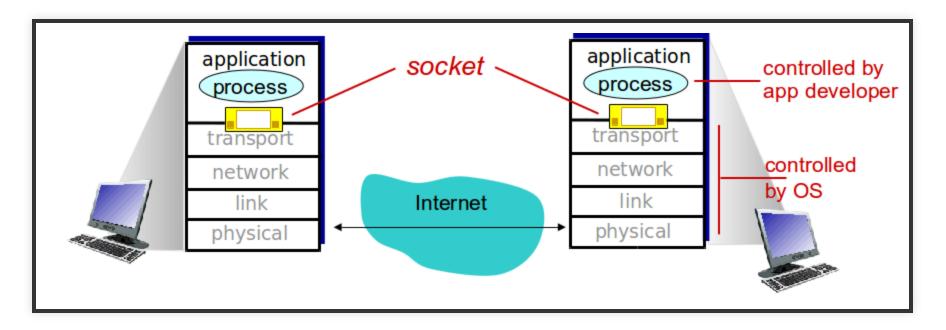
program running within a host

- within same host, two processes communicate using interprocess communication (defined by OS)
- processes in different hosts communicate by exchanging messages

PROCESSES COMMUNICATING

O client process

process that initiates communication



process that waits to be contacted

• aside: applications with P2P architectures have client processes and server processes

SOCKETS

- process sends/receives messages to/from its socket
- socket analogous to door
 - sending process shoves message out door
 - sending process relies on transport infrastructure on other side of door to deliver message to socket at receiving process

ADDRESSING PROCESSES

- to receive messages, process must have identifier
- host device has unique 32-bit IP address
- Q: does IP address of host on which process runs suffice for identifying the process?
- A: no, many processes can be running on same host
- identifier includes both IP address and port numbers associated with process on host.

EXAMPLE PORT NUMBERS:

- HTTP server: 80
- mail server: 25
 - to send HTTP message to gaia.cs.umass.edu web server:
- IP address: 128.119.245.12
- port number: 80
 - more shortly...

APP-LAYER PROTOCOL DEFINES

- types of messages exchanged
 - e.g., request, response
- message syntax:
 - what fields in messages and how fields are delineated
- message semantics
 - meaning of information in fields
- rules for when and how processes send and respond to messages

PROTOCOL TYPES

- Open protocols:
 - defined in RFCs
 - allows for interoperability
 - e.g., HTTP, SMTP
- Proprietary protocols:
 - e.g., Skype

- Data integrity
 - some apps (e.g., file transfer, web transactions) require 100% data integrity
 - other apps (e.g., audio) can tolerate some loss

- Timing
 - some apps (e.g., Internet telephony, interactive games) require low delay to be "effective"

- Throughput
 - some apps (e.g., multimedia) require minimum amount of throughput to be "effective"
 - other apps ("elastic apps") make use of whatever throughput they get

- Security
 - encryption, data integrity, ...

TRANSPORT SERVICE REQUIREMENTS

Application	Data loss	Throughput	Time sensitive
file transfer	no loss	elastic	no
e-mail	no loss	elastic	no
Web documents	no loss	elastic	no

TRANSPORT SERVICE REQUIREMENTS

Application	Data loss	Throughput	Time sensitive
real-time audio/video	loss-tolerant	audio: 5kbps- 1Mbps, video:10kbps- 5Mbps	yes, 100's msec
stored audio/video	loss-tolerant	same as above	yes, few secs

TRANSPORT SERVICE REQUIREMENTS

Application	Data loss	Throughput	Time sensitive
interactive games	loss-tolerant	few kbps up	yes, 100's msec
text messaging	no loss	elastic	yes and no

INTERNET TRANSPORT PROTOCOLS SERVICES

TCP SERVICE

- Reliable transport between sending and receiving process
- Flow control: sender won't overwhelm receiver
- Congestion control: throttle sender when network overloaded
- Does not provide: timing, minimum throughput guarantee, security
- Connection-oriented: setup required between client and server processes

UDP SERVICE

- Unreliable data transfer between sending and receiving process
- Does not provide: reliability, flow control, congestion control, timing, throughput guarantee, security, orconnection setup,

• Q: why bother? - Why is there a UDP?

APPLICATION, TRANSPORT PROTOCOLS

Application	Application layer protocol	underlying transport protocol
e-mail	SMTP [RFC 2821]	TCP
remote terminal access	Telnet [RFC 854]	TCP
Web	HTTP [RFC 2616]	TCP

APPLICATION, TRANSPORT PROTOCOLS

Application	Application layer protocol	underlying transport protocol
file transfer	FTP [RFC 959]	TCP
streaming multimedia	HTTP (e.g., YouTube), RTP [RFC 1889]	TCP or UDP
Internet telephony	SIP, RTP, proprietary (e.g., Skype)	TCP or UDP

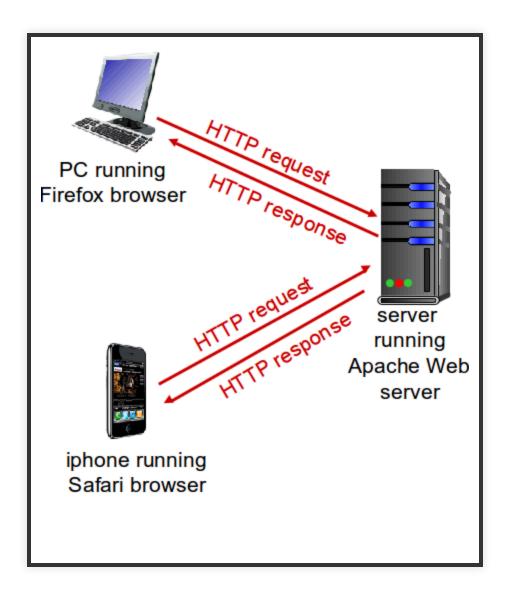
SECURING TCP

- TCP & UDP
 - no encryption
 - cleartext passwords sent into socket traverse Internet in cleartext

SECURING TCP

- SSL (TLS)
 - provides encrypted TCP connection
 - data integrity
 - end-point authentication
- SSL is at app layer
 - Apps use SSL libraries, which "talk" to TCP
- SSL socket API
 - cleartext passwds sent into socket traverse Internet encrypted
 - We cover this in chapter 8

WEB AND HTTP


First, a quick intro...

- web page consists of objects
- object can be HTML file, JPEG image, Java applet, audio file,...
- web page consists of base HTML-file which includes several referenced objects
- each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif	
host name	path name

HTTP OVERVIEW

HTTP: hypertext transfer protocol

HTTP OVERVIEW

HTTP: hypertext transfer protocol

- Web's application layer protocol
- Client/server model
 - client: browser that requests, receives, (using HTTP protocol) and "displays" Web objects
 - server: Web server sends (using HTTP protocol) objects in response to requests

HTTP OVERVIEW

uses TCP:

- client initiates TCP connection (creates socket) to server, port 80
- server accepts TCP connection from client
- HTTP messages (application-layer protocol messages) exchanged between browser (HTTP client) and Web server (HTTP server)
- TCP connection closed

HTTP is "stateless"

• server maintains no information about past client requests

HTTP OVERVIEW

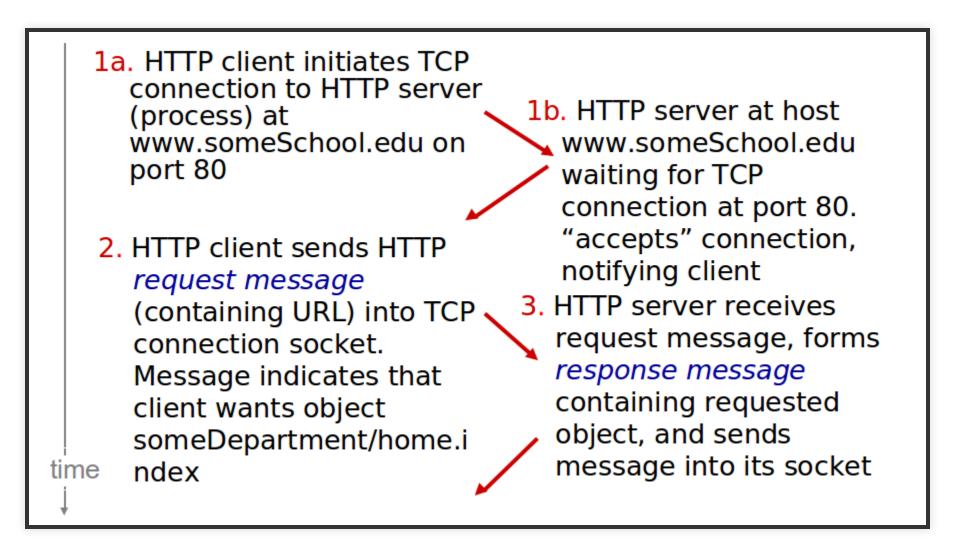
• protocols that maintain "state" are complex!

- past history (state) must be maintained
- if server/client crashes, their views of "state" may be inconsistent, must be reconciled

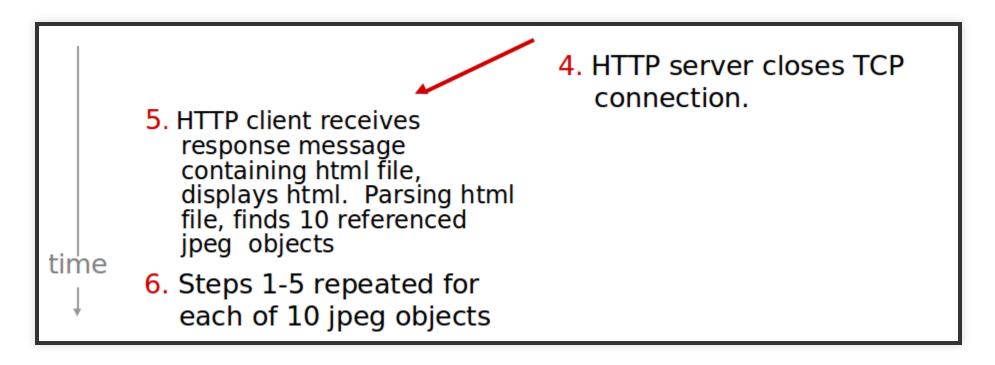
HTTP CONNECTIONS

non-persistent HTTP

- at most one object sent over TCP connection
 - connection then closed
- downloading multiple objects required multiple connections

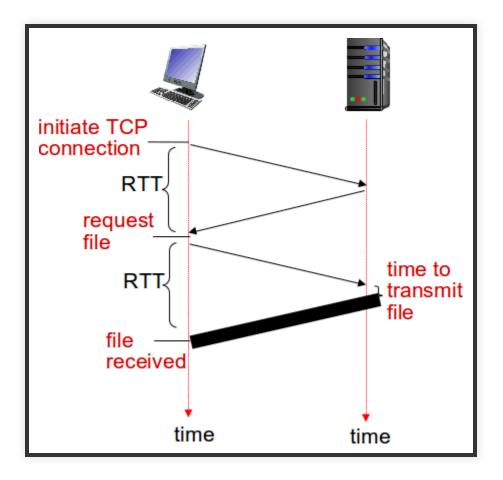

persistent HTTP

• multiple objects can be sent over single TCP connection between client, server


NON-PERSISTENT HTTP

suppose user enters URL:

www.someSchool.edu/someDepartment/index.html
 (contains text, references to 10 jpeg images)


NON-PERSISTENT HTTP (CONT.)

NON-PERSISTENT HTTP: RESPONSE TIME

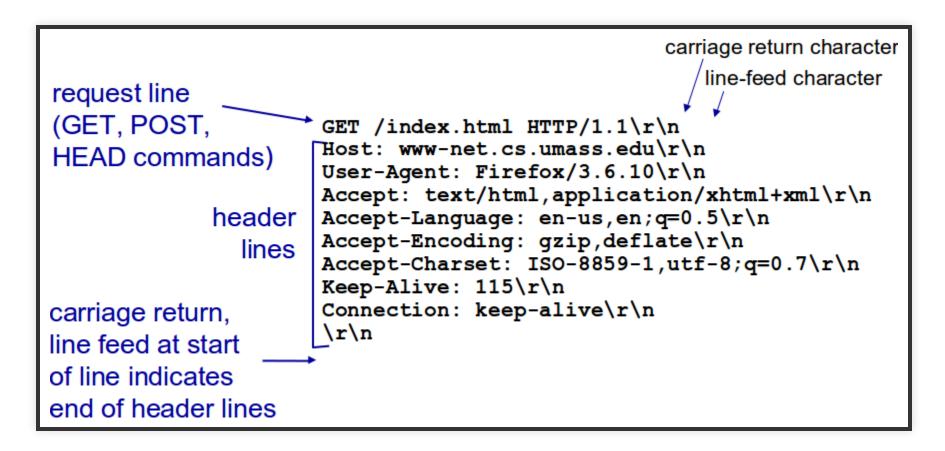
- **RTT** (definition): time for a small packet to travel from client to server and back
- HTTP response time
 - one RTT to initiate TCP connection
 - one RTT for HTTP request and first few bytes of HTTP response to return
 - file transmission time
 - non-persistent HTTP response time = 2RTT + file transmission time

NON-PERSISTENT HTTP: RESPONSE TIME

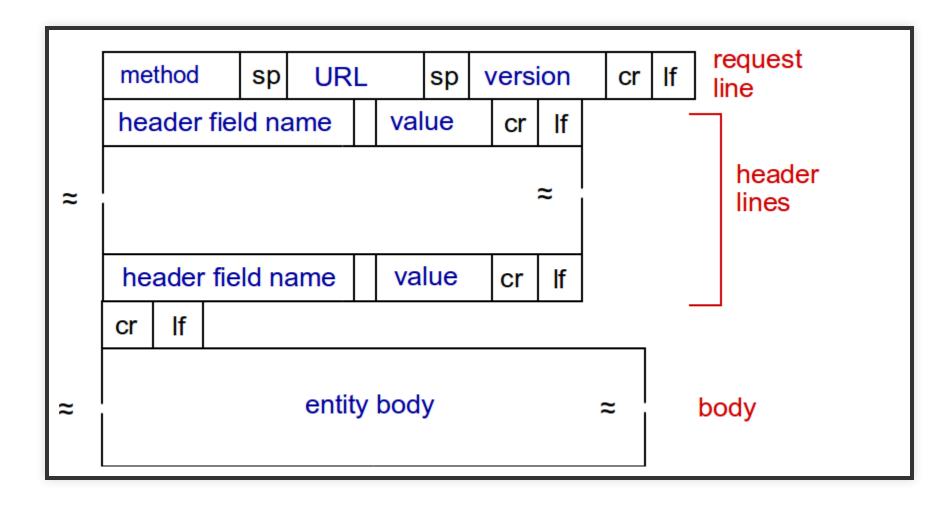
NON-PERSISTENT HTTP

On Non-persistent HTTP issues:

- requires 2 RTTs per object
- OS overhead for each TCP connection
- browsers often open parallel TCP connections to fetch referenced objects


PERSISTENT HTTP

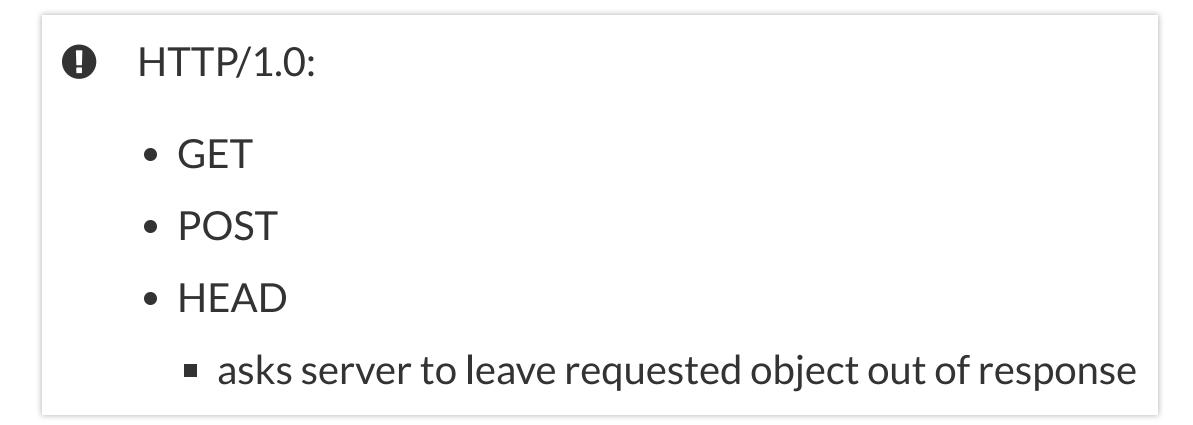
• Persistent HTTP:


- server leaves connection open after sending response
- subsequent HTTP messages between same client/server sent over open connection
- client sends requests as soon as it encounters a referenced object
- as little as one RTT for all the referenced objects

HTTP REQUEST MESSAGE

- two types of HTTP messages: request, response
- HTTP request message: ASCII (human-readable format)

HTTP REQUEST MESSAGE: GENERAL FORMAT



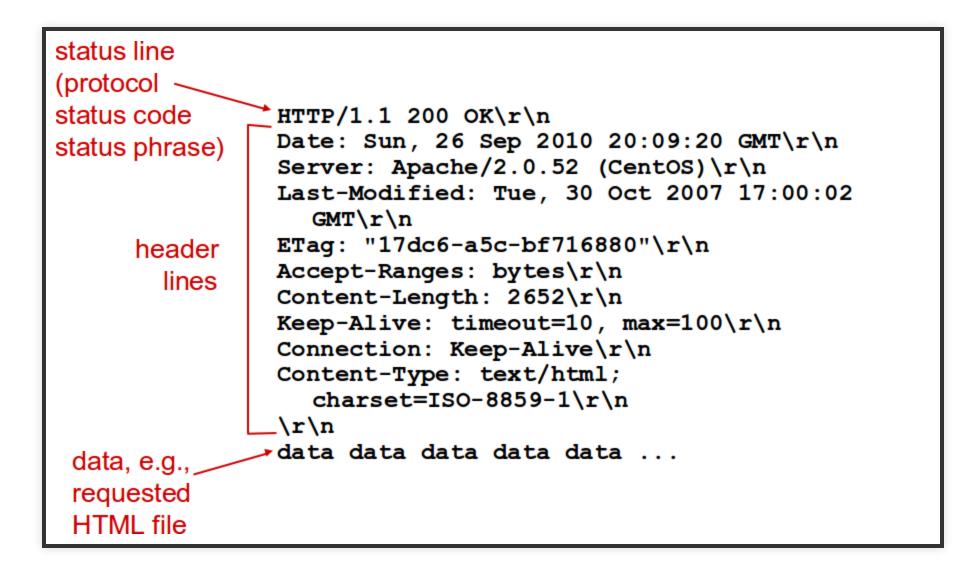
UPLOADING FORM INPUT

• POST method:

- web page often includes form input
- input is uploaded to server in entity body
- URL method:
 - uses GET method
 - input is uploaded in URL field of request line: www.somesite.com/animalsearch? monkeys=4&banana=2

METHOD TYPES

METHOD TYPES


• HTTP/1.1:

- GET, POST, HEAD
- PUT
 - uploads file in entity body to path specified in URL field

• DELETE

deletes file specified in the URL field

HTTP RESPONSE MESSAGE

HTTP RESPONSE STATUS CODES

- status code appears in 1st line in server-to-client response message.
- some sample codes:
- 200 OK request succeeded, requested object later in this msg
- **301 Moved Permanently** requested object moved, new location specified later in this msg (Location:)
- 400 Bad Request request msg not understood by server
- 404 Not Found requested document not found on this server
- 505 HTTP Version Not Supported

HTTP RESPONSE STATUS CODES

400's: You fucked up

500's: We fucked up

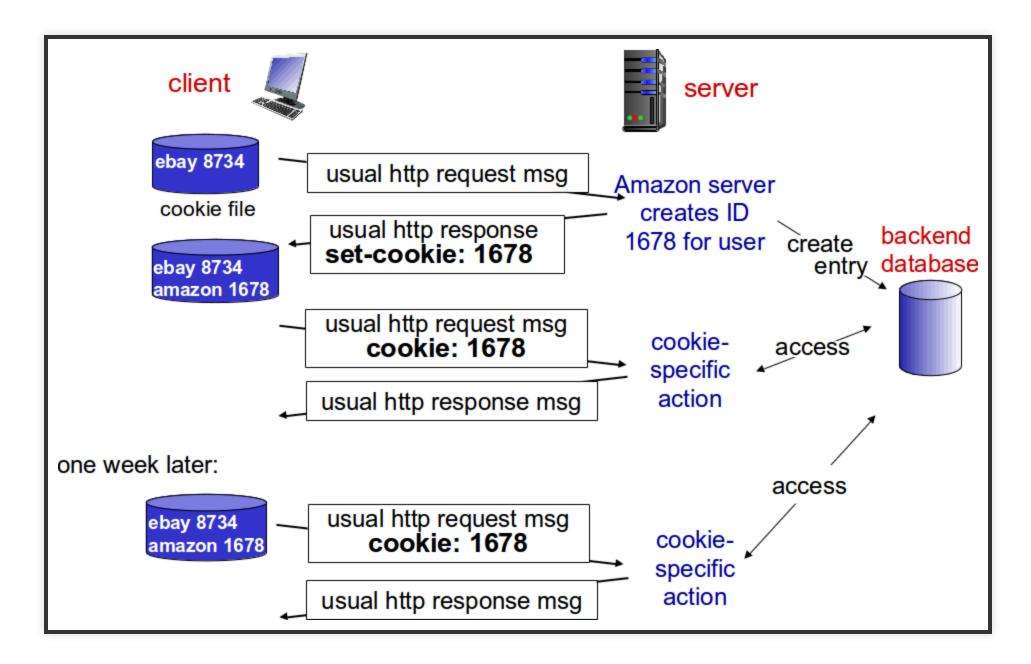
Take a look at code 418

TRYING OUT HTTP (CLIENT SIDE) FOR YOURSELF

• Telnet to your favorite Web server: telnet imada.sdu.dk 80 opens TCP connection to port 80 (default HTTP server port) at imada.sdu.dk.

anything typed in sent to port 80 at imada.sdu.dk

- type in a GET HTTP request: GET /~jamik/ HTTP/1.1 Host: imada.sdu.dk by typing this in (hit carriage return twice), you send this minimal (but complete) GET request to HTTP server
- look at response message sent by HTTP server!


USER-SERVER STATE: COOKIES

many Web sites use cookies

four components:

- cookie header line of HTTP response message
- cookie header line in next HTTP request message
- cookie file kept on user's host, managed by user's browser
- back-end database at Web site

COOKIES: KEEPING "STATE"

COOKIES (CONTINUED)

What cookies can be used for:

- authorization
- shopping carts
- recommendations
- user session state (Web e-mail)

HOW TO KEEP "STATE"

- protocol endpoints: maintain state at sender/receiver over multiple transactions
- cookies: http messages carry state

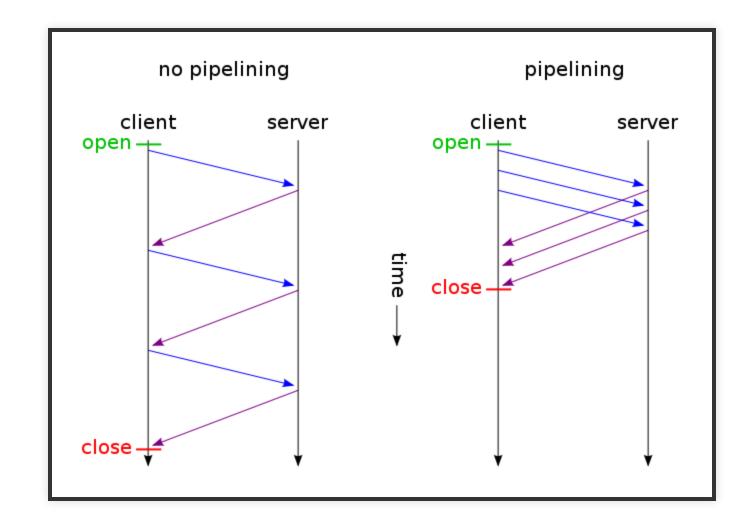
• cookies and privacy:

- cookies permit sites to learn a lot about you
- you may supply name and e-mail to sites

HTTP/2

- The HTTP/2 specification was published as RFC 7540 in May 2015
- Most major browsers added HTTP/2 support by the end of 2015
- Last update: HTTP 1.1 was in 1997
- Material from RFC 7540 and https://en.wikipedia.org/wiki/HTTP/2

GOALS FOR HTTP/2

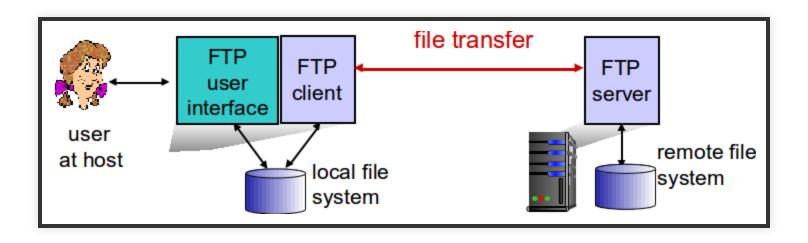

- Negotiation mechanism that allows clients and servers to elect to use HTTP 1.1, 2.0, or potentially other non-HTTP protocols.
- Maintain high-level compatibility with HTTP 1.1 (for example with methods, status codes, and URIs, and most header fields)
- Decrease latency to improve page load speed in web browsers by considering:
 - Data compression of HTTP headers
 - Pipelining of requests
 - Fixing the head-of-line blocking problem in HTTP 1.x
 - Multiplexing multiple requests over a single TCP connection

HEAD-OF-LINE BLOCKING

An issue for HTTP 1.0 and HTTP 1.1

- Requests must be treated in order
- Means that requests can wait behind a slow or large request
- HTTP 1.1 introduced pipelining to partially fix the issue
- Many clients also tried to create multiple connections to increase speed (unfair to other better behaved applications)

PIPELINING

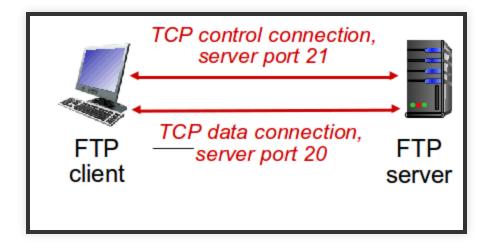


STREAMS AND MULTIPLEXING

- All communication in HTTP/2 is done through streams
- The client can create streams with odd numbers 1, 3, 5 and so on
- The server can create streams with even numbers 2, 4, 6 and so on
- 0 is used for connection control messages
- Even if one stream is blocked waiting for a slow or large request the others can still carry on

FTP

FILE TRANSFER PROTOCOL



- transfer file to/from remote host
- client/server model
 - client: side that initiates transfer (either to/from remote)
 - server: remote host
- ftp: RFC 959
- ftp server: port 21

SEPARATE CONTROL, DATA CONNECTIONS

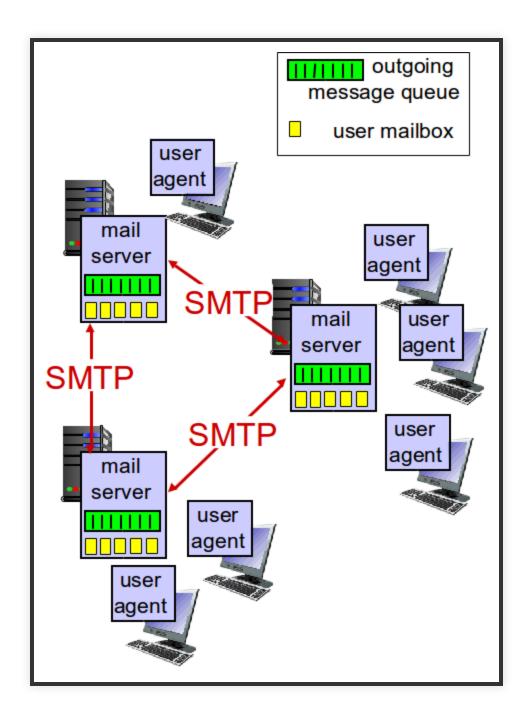
- FTP client contacts FTP server at port 21, using TCP
- client authorized over control connection
- client browses remote directory, sends commands over control connection
- when server receives file transfer command, server opens 2nd TCP data connection (for file) to client
- after transferring one file, server closes data connection

SEPARATE CONTROL, DATA CONNECTIONS

- server opens another TCP data connection to transfer another file
- control connection: "out of band"
- FTP server maintains "state": current directory, earlier authentication

FTP COMMANDS, RESPONSES

• sample commands:


- sent as ASCII text over control channel
- USER username
- PASS password
- LIST return list of file in current directory
- RETR filename retrieves (gets) file
- STOR filename stores (puts) file onto remote host

FTP COMMANDS, RESPONSES

• sample return codes

- status code and phrase (as in HTTP)
- 331 Username OK, password required
- 125 data connection already open; transfer starting
- 425 Can't open data connection
- 452 Error writing file

ELECTRONIC MAIL

ELECTRONIC MAIL

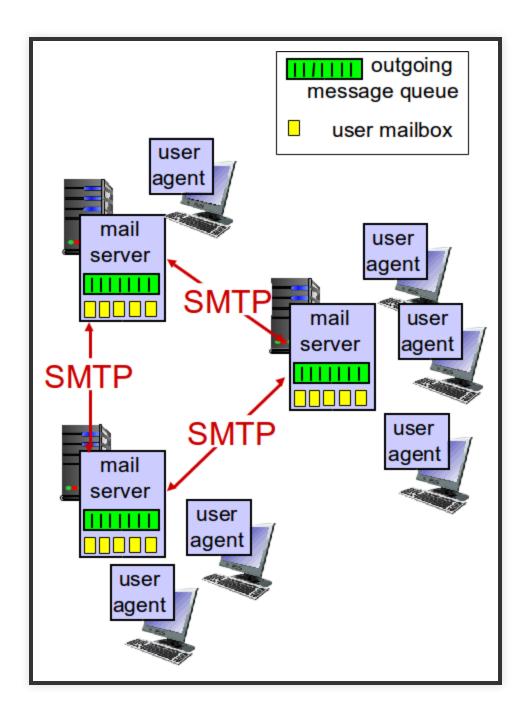
Three major components:

1. user agents

2. mail servers

3. simple mail transfer protocol: SMTP

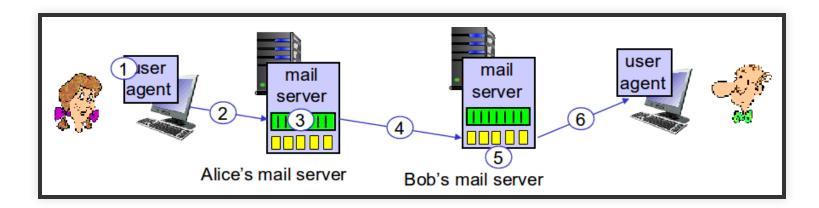
USER AGENT


- a.k.a. "mail reader"
- composing, editing, reading mail messages
- e.g., Outlook, Thunderbird, iPhone mail client
- outgoing, incoming messages stored on server

MAIL SERVERS

mail servers:

- mailbox contains incoming messages for user
- message queue of outgoing (to be sent) mail messages
- SMTP protocol between mail servers to send email messages
 - client: sending mail server
 - "server": receiving mail server


MAIL SERVERS

SMTP [RFC 2821]

SCENARIO: ALICE SENDS MESSAGE TO BOB

- 1. Alice uses UA to compose message "to" bob@someschool.edu
- 2. Alice's UA sends message to her mail server; message placed in message queue
- 3. client side of SMTP opens TCP connection with Bob's mail server
- 4. SMTP client sends Alice's message over the TCP connection
- 5. Bob's mail server places the message in Bob's mailbox
- 6. Bob invokes his user agent to read message

SAMPLE SMTP INTERACTION

- S: 220 hamburger.edu
- C: HELO crepes.fr
- S: 250 Hello crepes.fr, pleased to meet you
- C: MAIL FROM: <alice@crepes.fr>
- S: 250 alice@crepes.fr... Sender ok
- C: RCPT TO: <bob@hamburger.edu>
- S: 250 bob@hamburger.edu ... Recipient ok
- C: DATA
- S: 354 Enter mail, end with "." on a line by itself
- C: Do you like ketchup?
- C: How about pickles?
- C: .
- S: 250 Message accepted for delivery
- C: QUIT
- S: 221 hamburger.edu closing connection

TRY SMTP INTERACTION FOR YOURSELF:

- telnet servername 25
- see 220 reply from server
- enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands

above lets you send email without using email client (reader)

SMTP: FINAL WORDS

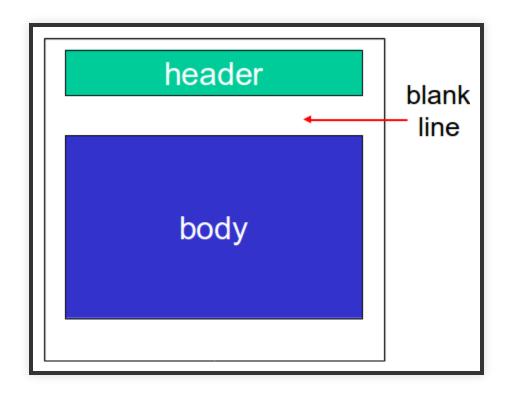
- SMTP uses persistent connections
- SMTP requires message (header & body) to be in 7-bit ASCII
- SMTP server uses CRLF.CRLF to determine end of message

SMTP: FINAL WORDS

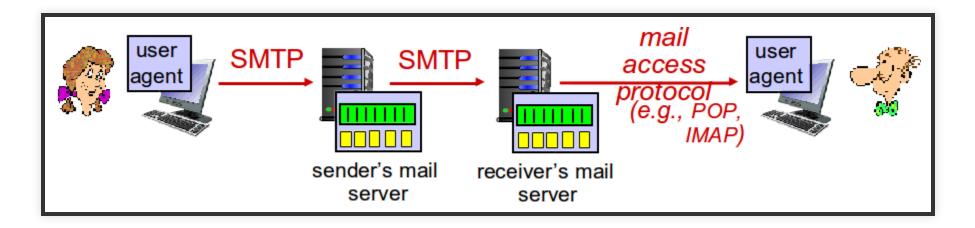
comparison with HTTP:

- HTTP: pull
- SMTP: push
- both have ASCII command/response interaction, status codes
- HTTP: each object encapsulated in its own response msg
- SMTP: multiple objects sent in multipart msg

MAIL MESSAGE FORMAT


SMTP: protocol for exchanging email msgs **RFC 822:** standard for text message format:

- header lines, e.g.,
 - To:
 - From:
 - Subject:


different from SMTP MAIL FROM, RCPT TO: commands!

- Body: the "message"
 - ASCII characters only

MAIL MESSAGE FORMAT

MAIL ACCESS PROTOCOLS

- SMTP: delivery/storage to receiver's server
- Mail access protocol: retrieval from server
 - POP: Post Office Protocol [RFC 1939]: authorization, download
 - IMAP: Internet Mail Access Protocol [RFC 1730]: more features, including manipulation of stored msgs on server
 - **HTTP:** gmail, Hotmail, Yahoo! Mail, etc.

POP3 PROTOCOL

Authorization phase

- client commands:
 - user: declare username
 - pass: password
- server responses
 - +OK
 - -ERR

POP3 PROTOCOL

Transaction phase, client:

- list: list message numbers
- retr: retrieve message by number
- dele: delete
- quit

POP3 PROTOCOL

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on
C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1="" contents=""></message>
S: .
C: dele 1
C: retr 2
S: <message 1="" contents=""></message>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

POP3 (MORE)

More about POP3

- previous example uses POP3 "download and delete" mode
 - Bob cannot re-read e-mail if he changes client
- POP3 "download-and-keep": copies of messages on different clients
- POP3 is stateless across sessions

IMAP

- keeps all messages in one place: at server
- allows user to organize messages in folders
- keeps user state across sessions:
 - names of folders and mappings between message IDs and folder name

DNS

DOMAIN NAME SYSTEM

- **people:** many identifiers: SSN, name, passport number
- Internet hosts, routers: IP address (32 bit) used for addressing datagrams.

"name", e.g., www.yahoo.com - used by humans

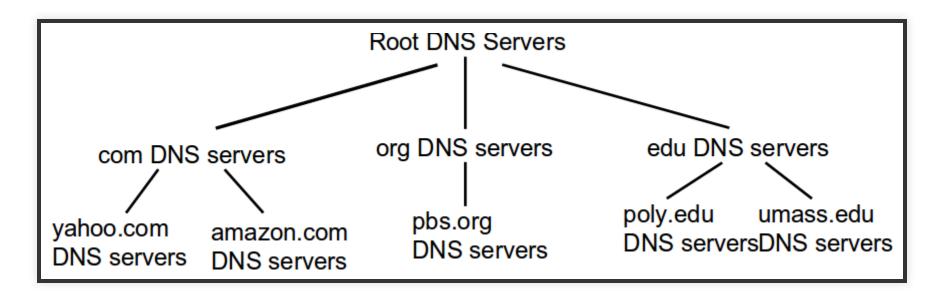
Q: how to map between IP address and name, and vice versa?

DOMAIN NAME SYSTEM

- Domain Name System:
 - **distributed database** implemented in hierarchy of many name servers
 - **application-layer protocol:** hosts, name servers communicate to *resolve* names (address/name translation)
 - note: core Internet function, implemented as applicationlayer protocol
 - complexity at network's "edge"

DNS: SERVICES, STRUCTURE

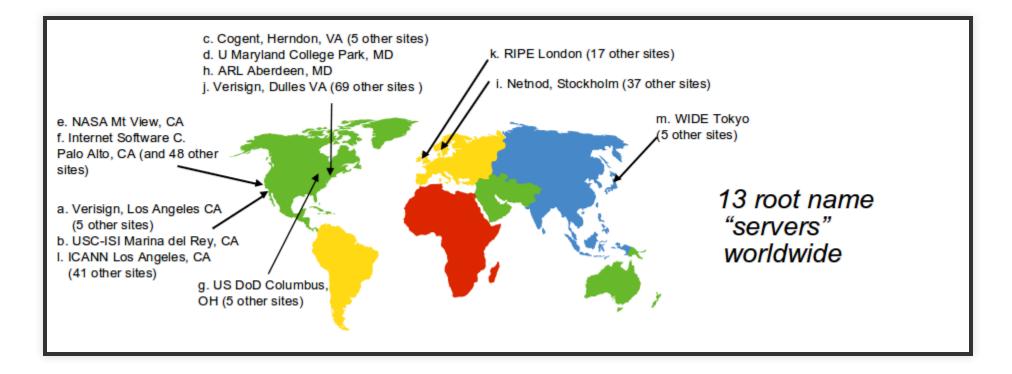
DNS services


- hostname to IP address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

DNS: SERVICES, STRUCTURE

Why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance
- A: doesn't scale!


DNS: A DISTRIBUTED, HIERARCHICAL DATABASE

client wants IP for www.amazon.com; 1st approx:

- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: ROOT NAME SERVERS

DNS: ROOT NAME SERVERS

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

TLD SERVERS

• top-level domain (TLD) servers:

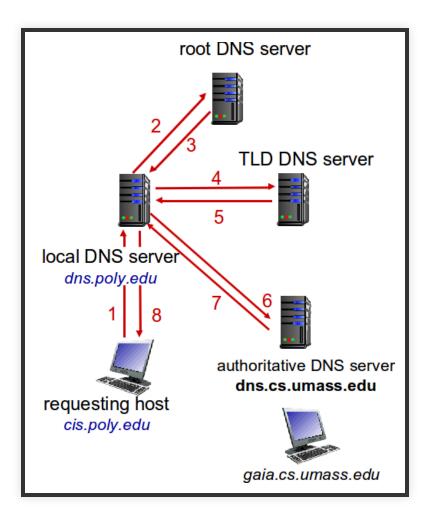
- responsible for com, org, net, edu, aero, jobs, museums, and all toplevel country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD

AUTHORITATIVE SERVERS

authoritative DNS servers:

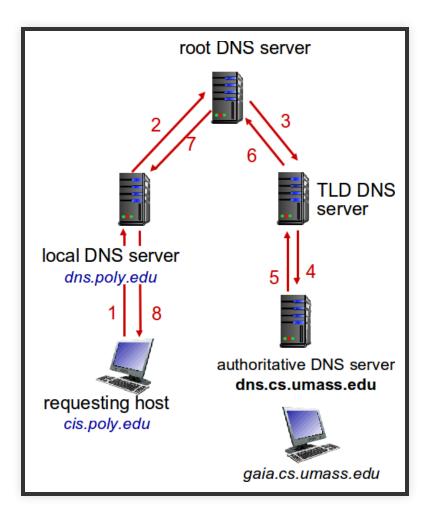
- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

LOCAL DNS NAME SERVER


- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
 - also called "default name server"
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy
 - Is there security considerations with a local DNS server

DNS NAME RESOLUTION EXAMPLE

host at cis.poly.edu wants IP address for gaia.cs.umass.edu


ITERATED QUERY:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

RECURSIVE QUERY

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

DNS NAME RESOLUTION EXAMPLE

Demo:

nslookup

DNS: CACHING, UPDATING RECORDS

- Once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - thus root name servers not often visited
- cached entries may be out-of-date (best effort name-to-address translation!)
 - if name host changes IP address, may not be known Internetwide until all TTLs expire
- update/notify mechanisms proposed IETF standard
 - RFC 2136

DNS RECORDS

• DNS: distributed db storing **resource records** (RR)

RR format: (name, value, type, ttl)

DNS RECORDS

- [type=A]
 - name is hostname
 - value is IP address
- [type=NS]
 - name is domain (e.g., foo.com)
 - value is hostname of authoritative name server for this domain

DNS RECORDS

- [type=CNAME]
 - name is alias name for some "canonical" (the real) name
 - www.ibm.com is really servereast.backup2.ibm.com
 - value is canonical name
- [type=MX]
 - value is name of mailserver associated with name

DNS NAME RESOLUTION EXAMPLE

Demo:

dig

DNS PROTOCOL, MESSAGES

query and reply messages, both with same message format Message header

- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

DNS PROTOCOL, MESSAGES

←2 bytes> ←2 bytes>	
identification	flags
# questions	# answer RRs
# authority RRs	# additional RRs
questions (variable # of questions)	
answers (variable # of RRs)	
authority (variable # of RRs)	
additional info (variable # of RRs)	

INSERTING RECORDS INTO DNS

- example: new startup "Network Utopia"
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server: (networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)
- create authoritative server type A record for www.networkuptopia.com; type NS record for networkutopia.com

ATTACKING DNS

DDoS attacks

- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache IPs of TLD servers, allowing root server bypass
- Bombard TLD servers
 - Potentially more dangerous

ATTACKING DNS

Redirect attacks

- Man-in-middle: Intercept queries
- DNS poisoning: Send bogus replies to DNS server, which caches

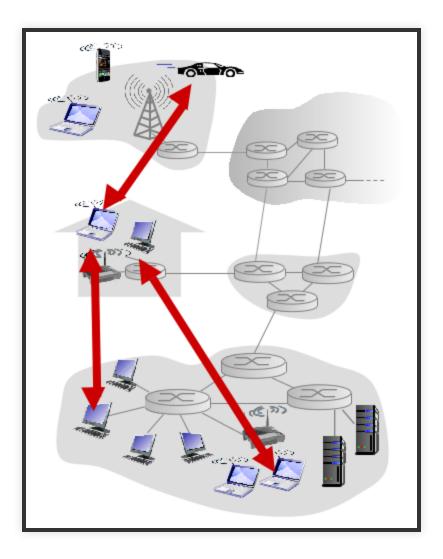
ATTACKING DNS

Exploit DNS for DDoS

- Send queries with spoofed source address: target IP
- Requires amplification

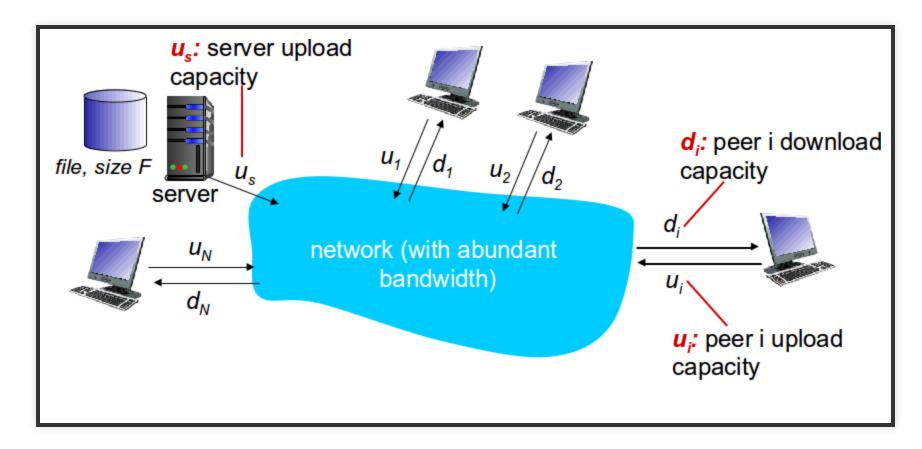
P2P APPLICATIONS

PURE P2P ARCHITECTURE


- no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses

PURE P2P ARCHITECTURE

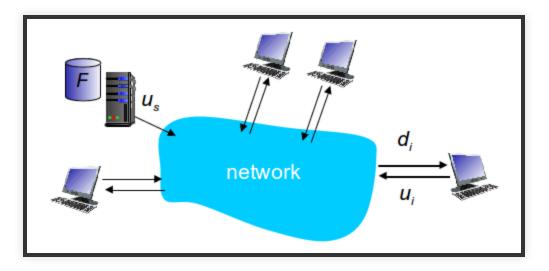
examples:


- file distribution (BitTorrent)
- Streaming (KanKan)
- VoIP (Skype)

PURE P2P ARCHITECTURE

FILE DISTRIBUTION: CLIENT-SERVER VS P2P

- Question: how much time to distribute file (size F) from one server to N peers?
 - peer upload/download capacity is limited resource


FILE DISTRIBUTION TIME: CLIENT-SERVER

- Server transmission: must sequentially send (upload) N file copies:
 - time to send one copy: F/u_S
 - time to send N copies: NF/u_S

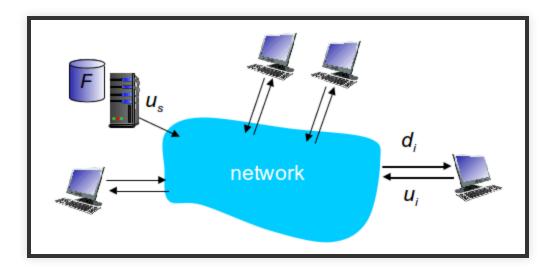
- client: each client must download file copy
 - d_{min} = min client download rate
 - min client download time: F/d_{min}

FILE DISTRIBUTION TIME: CLIENT-SERVER

• time to distribute F to N clients using client-server approach

 $D_{C-S} > max(NF/u_S,F/d_{min})$

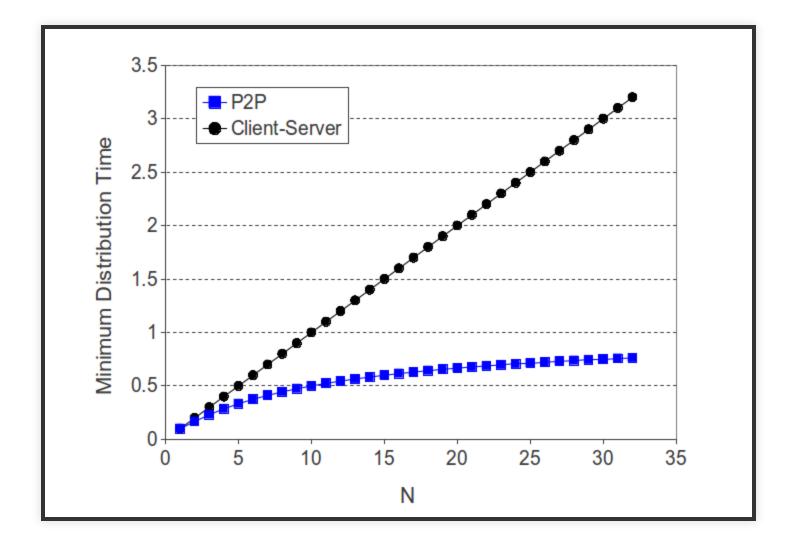
Notice it increases linearly in N


FILE DISTRIBUTION TIME: P2P

• time to send one copy: F/u_S

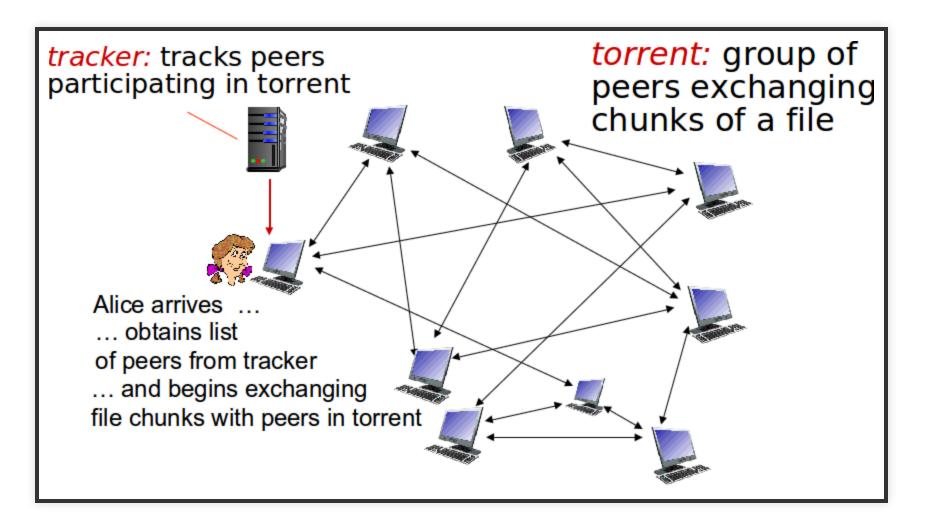
• client: each client must download file copy

• min client download time: F/d_{min}

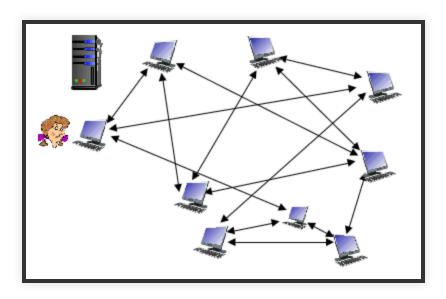

• clients as aggregate must download NF bits

• max upload rate (limiting max download rate) is $u_s + \Sigma u_i$

• time to distribute F to N clients using P2P approach $D_{P2P} > max(F/u_s, F/d_{min}, NF/(u_s + \Sigma u_i))$


CLIENT-SERVER VS. P2P: EXAMPLE

client upload rate = u, F/u = 1 hour, $u_s = 10u$, $d_{min} \ge u_s$


P2P FILE DISTRIBUTION: BITTORRENT

- file divided into 256Kb chunks
- peers in torrent send/receive file chunks

P2P FILE DISTRIBUTION: BITTORRENT

- peer joining torrent:
 - has no chunks, but will accumulate them over time from other peers
 - registers with tracker to get list of peers, connects to subset of peers ("neighbors")

P2P FILE DISTRIBUTION: BITTORRENT

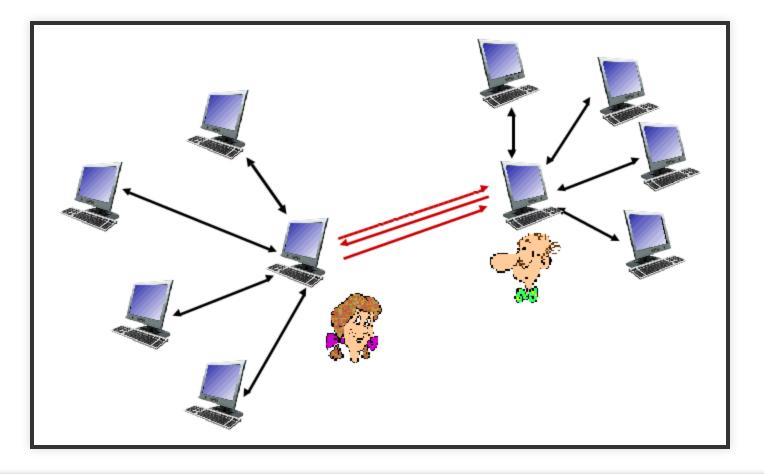
- while downloading, peer uploads chunks to other peers
- peer may change peers with whom it exchanges chunks
- churn: peers may come and go
- once peer has entire file, it may (selfishly) leave or (altruistically) remain in torrent

BITTORRENT: REQUESTING, SENDING FILE CHUNKS

• requesting chunks:

- at any given time, different peers have different subsets of file chunks
- periodically, Alice asks each peer for list of chunks that they have
- Alice requests missing chunks from peers, rarest first

BITTORRENT: REQUESTING, SENDING FILE CHUNKS

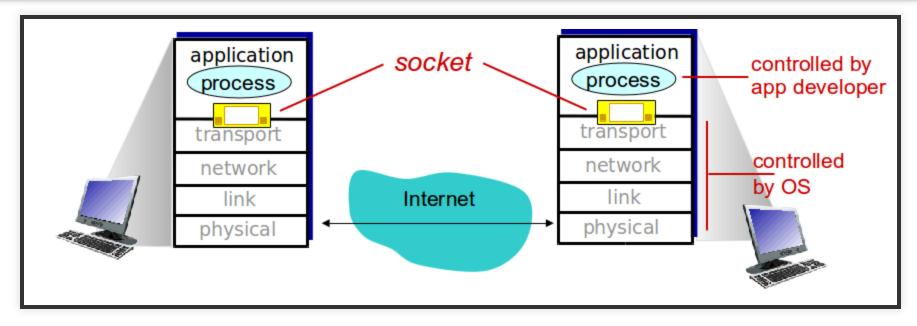

• sending chunks: tit-for-tat

- Alice sends chunks to those four peers currently sending her chunks at highest rate
 - other peers are choked by Alice (do not receive chunks from her)
 - re-evaluate top 4 every 10 secs
- every 30 secs: randomly select another peer, starts sending chunks
 - "optimistically unchoke" this peer
 - newly chosen peer may join top 4

BITTORRENT: TIT-FOR-TAT

- Alice "optimistically unchokes" Bob
- Alice becomes one of Bob's top-four providers; Bob reciprocates
- Bob becomes one of Alice's top-four providers

BITTORRENT: TIT-FOR-TAT



If the set of the set

SOCKET PROGRAMMING WITH UDP AND TCP

SOCKET PROGRAMMING

- **goal:** Learn how to build client/server applications that communicate using sockets
- Socket: door between application process and end-endtransport protocol

SOCKET PROGRAMMING

Two socket types for two transport services:

- UDP: unreliable datagram
- **TCP:** reliable, byte stream-oriented

Application Example:

SOCKET PROGRAMMING WITH UDP

UDP: no "connection" between client and server

- no handshaking before sending data
- sender explicitly attaches IP destination address and port number to each packet
- rcvr extracts sender IP address and port \# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint: UDP provides unreliable transfer of groups of bytes ("datagrams") between client and server

SOCKETS IN JAVA

UDP Server

```
DatagramSocket socket = new DatagramSocket(12000);
System.out.println("Waiting for packets");
byte[] buf = new byte[1024];
DatagramPacket packet = new DatagramPacket(buf, buf.length);
socket.receive(packet);
String payload = new String(packet.getData(), 0, packet.getLength());
String responsePayload = payload.toUpperCase();
InetAddress address = packet.getAddress();
int port = packet.getPort();
buf = responsePayload.getBytes();
packet = new DatagramPacket(buf, buf.length, address, port);
socket.send(packet);
```

SOCKETS IN JAVA

UDP Client

```
InetAddress address = InetAddress.getLoopbackAddress();
Integer port = 12000;
DatagramSocket socket = new DatagramSocket();
System.out.println("Input lowercase sentence:\n");
Scanner scanner = new Scanner(System.in);
String message = scanner.nextLine();
byte[] buf = message.getBytes();
DatagramPacket packet = new DatagramPacket(buf, buf.length, address, port);
socket.send(packet);
packet = new DatagramPacket(buf, buf.length);
socket.receive(packet);
String received = new String(packet.getData(), 0, packet.getLength());
System.out.println("Received:" + received);
```

SOCKET PROGRAMMING WITH TCP

Client must contact server

- server process must first be running
- server must have created socket (door) that welcomes client's contact

SOCKET PROGRAMMING WITH TCP

client contacts server by:

- Creating TCP socket, specifying IP address, port number of server process
- when client creates socket: client TCP establishes connection to server TCP
- when contacted by client, server TCP creates new socket for server process to communicate with that particular client
 - allows server to talk with multiple clients
 - source port numbers used to distinguish clients (more in Chap 3)

SOCKET PROGRAMMING WITH TCP

Application viewpoint: TCP provides reliable, in-order bytestream transfer ("pipe") between client and server

SOCKETS IN JAVA

TCPServer

```
ServerSocket serverSocket = new ServerSocket(12000);
Socket socket = serverSocket.accept();
boolean autoflush = true;
PrintWriter out = new PrintWriter(socket.getOutputStream(), autoflush);
BufferedReader in = new BufferedReader(
        new InputStreamReader(socket.getInputStream())
);
// read the response
boolean loop = true;
StringBuilder sb = new StringBuilder(8096);
while (loop) {
    if (in.ready()) {
        int i = 0;
        while (i != '\n') {
            i = in.read(); sb.append((char) i);
        loop = false;
String payload = sb.toString();
out.println(payload.toUpperCase() );
out.flush();
out.close();
```

socket.close();
serverSocket.close();

SOCKETS IN JAVA

TCPClient

```
Socket socket = new Socket("127.0.0.1", 12000);
boolean autoflush = true;
PrintWriter out = new PrintWriter(socket.getOutputStream(), autoflush);
BufferedReader in = new BufferedReader(
    new InputStreamReader(socket.getInputStream())
);
System.out.println("Input lowercase sentence:\n");
Scanner scanner = new Scanner(System.in);
String message = scanner.nextLine();
out.println(message);
out.println();
out.flush();
// read the response
String response = in.readLine();
System.out.println("Received:" + response);
out.close();
socket.close();
```

VIDEO STREAMING AND CONTENT DELIVERY NETWORKS

INTERNET VIDEO - CONTEXT

- Video traffic: major consumer of Internet bandwidth
 - Netflix: 37% of downstream residential ISP traffic
 - YouTube: 16% of downstream residential ISP traffic
 - ~1B YouTube users, ~75M Netflix users

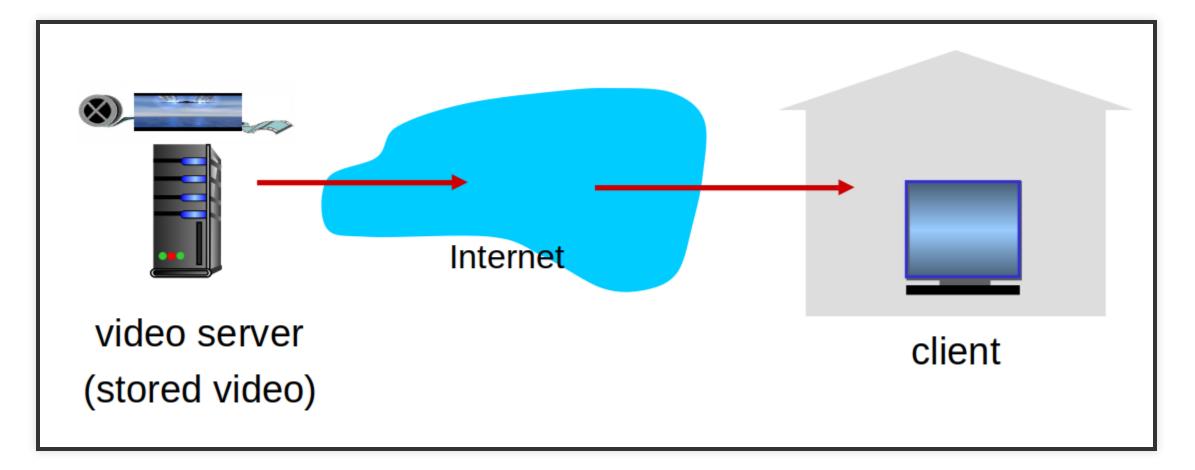
INTERNET VIDEO - CONTEXT

- Challenge: scale how to reach ~1B users?
 - Single mega-video server won't work (why?)
- Challenge: heterogeneity
- different users have different capabilities (e.g., wired versus mobile; bandwidth rich versus bandwidth poor)
- Solution: distributed, application-level infrastructure

- Video: sequence of images displayed at constant rate
 - e.g., 24 images/sec
- Digital image: array of pixels
 - each pixel represented by bits
- **Coding:** use redundancy *within* and *between* images to decrease number of bits used to encode image
 - spatial (within image)
 - temporal (from one image to next)

/ spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i


frame i _____

frame *i*+1

- CBR (constant bit rate): video encoding rate fixed
- VBR (variable bit rate): video encoding rate changes as amount of spatial, temporal coding changes
- Examples:
 - MPEG 1 (CD-ROM) 1.5 Mbps
 - MPEG2 (DVD) 3-6 Mbps
 - MPEG4 (often used in Internet, < 1 Mbps)
 - 4K quality (> 10Mbps)

STREAMING STORED VIDEO

Simple scenario

Single 2Mbps video with 67 min duration \Rightarrow 1 GB storage and traffic

Most important: Average throughput >= bit rate of compressed video

HTTP STREAMING AND DASH

DASH: Dynamic, Adaptive Streaming over HTTP

DASH - SERVER

- Divides video file into multiple chunks
- Each chunk stored, encoded at different rates
- Manifest file: provides URLs for different chunks

DASH - CLIENT

- Periodically measures server-to-client bandwidth
- Consulting manifest, requests one chunk at a time
 - Chooses maximum coding rate sustainable given current bandwidth
 - Can choose different coding rates at different points in time (depending on available bandwidth at time)

DASH

- "Intelligence" at client: client determines
 - When to request chunk (so that buffer starvation, or overflow does not occur)
 - What encoding rate to request (higher quality when more bandwidth available)
 - Where to request chunk (can request from URL server that is "close" to client or has high available bandwidth)

CONTENT DISTRIBUTION NETWORKS

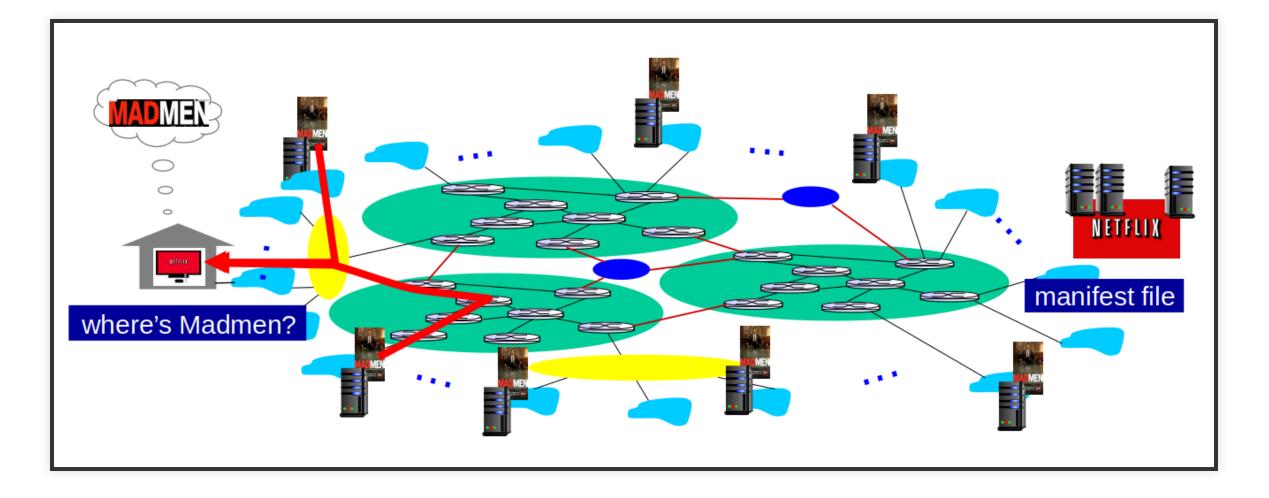
• **Challenge:** how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?

CONTENT DISTRIBUTION NETWORKS

Option 1: single, large "mega-server"

- single point of failure
- point of network congestion
- long path to distant clients
- multiple copies of video sent over outgoing link
 1. quite simply: this solution doesn't scale

CONTENT DISTRIBUTION NETWORKS


Option 2: store/serve multiple copies of videos at multiple geographically distributed sites (CDN)

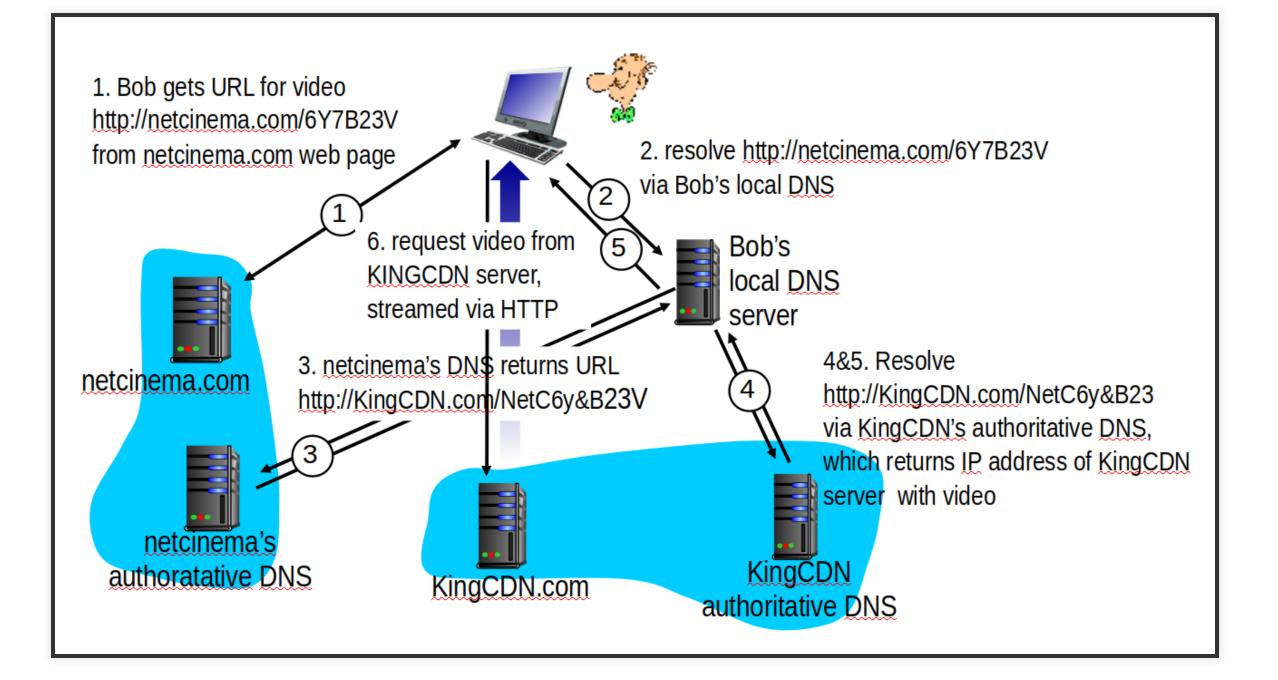
- Enter deep: push CDN servers deep into many access networks
 - close to users
 - used by Akamai, 1700 locations
- **Bring home:** smaller number (10's) of larger clusters in POPs near (but not within) access networks
 - used by Limelight

CDN OPERATION

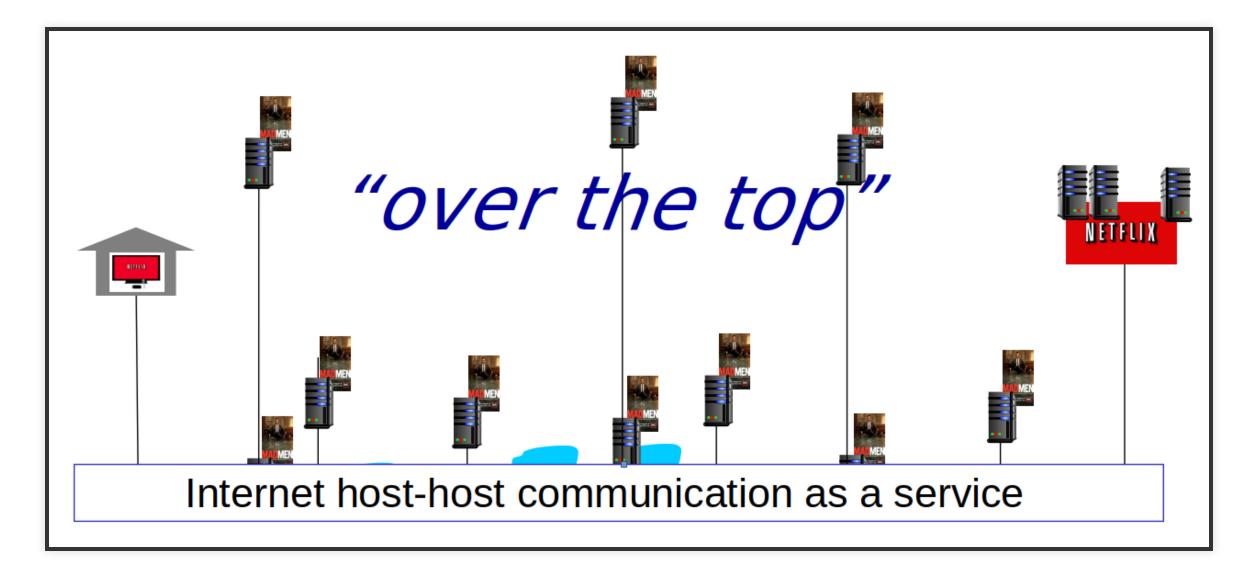
- CDN: stores copies of content at CDN nodes
 - e.g. Netflix stores copies of MadMen
- subscriber requests content from CDN
 - directed to nearby copy, retrieves content
 - may choose different copy if network path congested

CDN OPERATION

GOOGLE NETWORK INFRASTRUCTURE


- 14 Mega data centers (2016)
 - Each ~100.000 servers
- Estimated 50 clusters in IXP
 - Each 100-500 servers
- Many hundreds of "Enter-deep" clusters located in access ISP
 - Typically 10 servers in rack

All networked with Googles private network - largely independent of public internet


CDN CONTENT ACCESS

Bob (client) requests video http://netcinema.com/6Y7B23V video stored in CDN at http://KingCDN.com/NetC6y&B23V

CDN CONTENT ACCESS

CDN - OVER THE TOP

CDN - OVER THE TOP

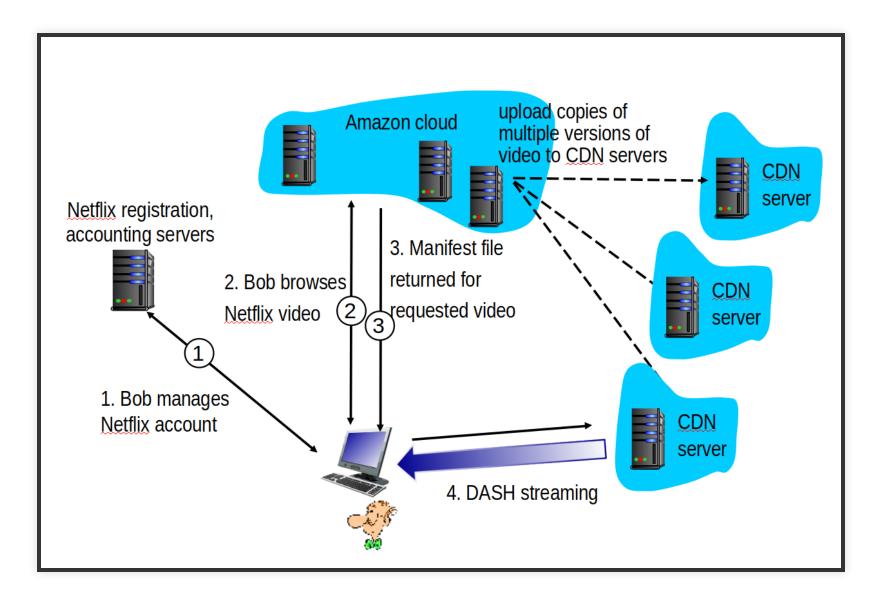
- **OTT challenges:** coping with a congested Internet
 - from which CDN node to retrieve content?
 - viewer behavior in presence of congestion?
 - what content to place in which CDN node?

CLUSTER SELECTION STRATEGIES

Geographically closest: Using geo-location database \rightarrow Map Local DNS to location

- Ok for many users
- But if local DNS is not really local ⇒ poor performance
- Does not take into account network hops or network latency/conguestion

Real-time measurements: Performed periodically by the CDN


- Takes into account current traffic conditions
- Drawback: DNS might not reply to such probes

CASE STUDIES - NETFLIX, YOUBE AND KANKAN

CDN EXAMPLE - NETFLIX

- Runs website and more on Amazon Cloud
 - Content ingestion: Receive master movie and upload
 - Content processing: For DASH
 - Uploading versions to CDN: Has their own CDN (Akamai for website)

CDN EXAMPLE - NETFLIX

CDN EXAMPLE - NETFLIX

- Server racks at
 - 50 IXP locations
 - Hundreds of ISPs
- Pushes to racks during off-peak periods
- Netflix software tells which CDN server to use

CDN EXAMPLE - YOUTUBE

- 300 hours of video uploaded every minute
- Several billion video views a day
- Uses pull-caching
- Directs user to server where RTT is lowest
- Requieres user to select version/quality (Not DASH)
- Processes every video uploaded (making different versions)

CDN EXAMPLE - KANKAN

- Netflix and Google setup costly (servers, bandwith)
- Kankan uses P2P delivery (along with client-server)
- Few 100's servers within China pushes video to these
- Start videos from client-server, gradually use P2P when downloaded

QUESTIONS