ECTURE TRANS P(l RT
lAYER (2)




GOALS (1)

o Understand principles behind transport layer services:
= Flow control

= Congestion control



e Learn about Internet transport layer protocols:

C

C

GOALS (2)

P: connection-oriented reliable transport

P congestion control



CONNECTION-ORIENTED TRANSPORT: TCP



TCP: OVERVIEW

o« RFCs: 793,1122,1323, 2018, 2581
e Point-to-point:
= one sender, one receiver
e Reliable, in-order byte steam:
= No "message boundaries”
e Pipelined:

» TCP congestion and flow control set window size



TCP: OVERVIEW

e Full duplex data:
= bi-directional data flow in same connection
= MSS: maximum segment size

« Connection-oriented:

= handshaking (exchange of control msgs) inits sender, receiver
state before data exchange

e Flow controlled:

» sender will not overwhelm receiver



TCP SEGMENT STRUCTURE

« 32 bits .

URG: urgent data
(generally not used)™_ source port # | destport#

ACK: ACK # . sequence number
valid \clqowledgementnumber

head
PSH: push data now on ﬁ[@bE Ecﬁj'f receive window
(generally not used) — "'?

counting

by bytes

of data

(not segments!)

# bytes
rcvr willing
to accept

Urg data pointer

RST, SYN, FIN:—| op/a( s (variable length)
connection estab

(setup, teardown
commands) Sy
application

Internet / data
checksum (variable length)
(as in UDP)




TCP SEQ. NUMBERS, ACKS

outgoing segment from sender
source port # dest port #
sequence number |

acknowledgement number
| | rwnd

checksum urg pointer
window sjze

« N >

sender sequence number space

sent sent, usable not

ACKed not-yet but not usable

ACKed yet sent

(“in-flight

'Thcoming segment to sender

source port # dest port #
sequence number

acknowledgement number

A rwnd

checksum urg pointer




TCP SEQ. NUMBERS, ACKS

Sequence numbers:
e Byte stream “number” of first byte in segment’s data
Acknowledgements:

o Seq # of next byte expected from other side

e Cumulative ACK

Q: how receiver handles out-of-order segments?
A: TCP spec doesn'’t say, - up to implementor



TCP SEQ. NUMBERS, ACKS

Host A Host B
g B
User
types

'C" |seq=42, ACk=79, data = ‘C’
host ACKs
receipt of

‘C’, echoes
Seq=79, ACK=43, data = ‘C’ back ‘C’

\/

host ACKs
receipt
of echoed

'C’ \N\? 43 ACK=80___
eq: . =

simple telnet scenario




TCP ROUND TRIP TIME, TIMEOUT

O Q: how to set TCP timeout value?
e Longer than RTT

» But RTT varies
o too short: premature timeout, unnecessary retransmissions

e too long: slow reaction to segment loss



TCP ROUND TRIP TIME, TIMEOUT

O Q:how toestimate RTT?

o SampLeRTT: measured time from segment transmission until ACK
receipt

= [gnore retransmissions

« Samp LeRTT will vary, want estimated RTT “smoother”

» gverage several recent measurements, not just current
SampleRTT



TCP ROUND TRIP TIME, TIMEOUT

EstimatedRTT =(1-a) * EstimatedRTT + a * SampleRTT

o exponential weighted moving average
e influence of past sample decreases exponentially fast

e typical value: a =0.125



TCP RTT - TIMEOUT INTERVAL

o EstimatedRTT plus “safety margin”
e large variation in EstimatedRTT — larger safety margin
Estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-B) * DevRTT + 3 * | SampleRTT-EstimatedRTT]|
Typically, B = 0.25

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

.11



TCP RELIABLE DATA TRANSFER

o TCP creates rdt service on top of IP’s unreliable service
» Pipelined segments
= Cumulative acks
= Single retransmission timer
e Retransmissions triggered by:
= Timeout events
= Duplicate acks
o Let’s initially consider simplified TCP sender:

= ignore duplicate acks, flow control, congestion control



TCP SENDER EVENTS:

Data received from app:

o create segment with seq #
e seq # is byte-stream number of first data byte in segment
o start timer if not already running

» think of timer as for oldest unacked segment

= expiration interval: T1meOutInterval



TCP SENDER EVENTS:

Timeout:

e Retransmit segment that caused timeout

e Restart timer

Ack recieved:

o If ack acknowledges previously unacked segments

» Update what is known to

» Start timer if there are stil

e ACKed

unacked segments

.14



TCP SENDER (SIMPLIFIED

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSegNum + length(data)
if (timer currently not running)

start timer

A

NextSegNum = InitialSeqNum / Walit
SendBase = InitialSegqNum for

event timeout
retransmit not-yet-acked
segment with

smallest seq. #
ACK received, with ACK field value y start timer

if (y > SendBase) {
SendBase =y
[* SendBase-1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)
start timer
else stop timer

}




TCP: RETRANSMISSION SCENARIOS
¥ ¥ T ¥

|
SendBase=92 ~—
T Seq=92, 8 bytes of data ‘ Seq=92, 8 bytes of data
= 5 ;\Eu 20 byt \NfF”
J Seq= , €5 0T aa
2 ACK=100"_ sy
= ) <l =
= i ACK=1 oc/
l l ACK=120
‘--.._-_--.
Seq=92, 8 bytes of data eq=92, 8
T— SendBase=10 bytes of data__
ACK=100 SendBase=12
/ = ACK=120

SendBase=12

lost ACK scenario premature timeout




TCP: RETRANSMISSION SCENARIOS

Host A Host B

g -3

Seq=92, 8 bytes of data

\N

Seq=100, 20 bytew

ACK=100
X
ACK=120

i/

le—— timeout —*

A

Seq=120, 15 bytes of data

\\L

cumulative ACK

A7



TCP ACK GENERATION

RFC 1122, RFC 2581

Event at receiver

TCP receiver action

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

delayed ACK. Wait up to
500ms for next segment. If no
next segment, send ACK

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single
cumulative ACK, ACKing both
In-order segments



TCP ACK GENERATION

RFC 1122, RFC 2581

Event at receiver

TCP receiver action

arrival of out-of-order segment
higher-than-expect seq. # —
Gap detected

immediately send duplicate
ACK, indicating seq. # of next
expected byte

arrival of segment that partially
or completely fills gap

immediate send ACK, provided
that segment starts at lower
end of gap



TCP FAST RETRANSMIT

e Time-out period often relatively long:
» Long delay before resending lost packet

e Detect lost segments via duplicate ACKs.

» Sender often sends many segments back-to-back

» If segment is lost, there will likely be many duplicate ACKs.

3.20



TCP FAST RETRANSMIT

© TCP fast retransmit

if sender receives 3 ACKs for same data (“triple duplicate
ACKSs”), resend unacked segment with smallest seq #

o likely that unacked segment lost, so don’t wait for timeout

3.21



TCP FAST RETRANSMIT

Host A Host B

e

Seq=92, 8 bytes of data

'Seq=1oﬂw
‘\x

ACK=100

F

timeout

\

Seq=100, 20 bytes of data

fast retransmit after sender
receipt of triple duplicate ACK

R

22



TCP RDT

¢ Is TCP a GBN or SR protocol?



TCP FLOW CONTROL

© Flow control

Receiver controls sender, so sender won't overflow receiver’s
buffer by transmitting too much, too fast



TCP FLOW CONTROL

application ‘
application may process
remove data from | application
TCP socket buffers .... NNy

TCP socket
receiver buffers

... slower than
TCP ——

receiver is

. . CP
delwerln_g -
(sender is

sending) B

_ code : ;E%

from sender I

T |

receiver protocol stack




TGP FLOW CONTROL

e Receiver “advertises” free buffer space by including rwnd value in
TCP header of receiver-to-sender segments

» RcvBuffer size set via socket options (typical default is 4096
bytes)

= many operating systems autoadjust RcvBuffer

o Sender limits amount of unacked (“in-flight”) data to receiver’s
rwnd value

o Guarantees receive buffer will not overflow

3.26



TGP FLOW CONTROL

to application process

b

RcvBuffer buffered data

T

rwnd | | free buffer space

1

TCP segment payloads

receiver-side buffering




SILLY WINDOW SYNDROME

¢ The silly-window syndrome is a term for a scenario in which
TCP transfers only small amounts of data at a time.

o TCP/IP packets have a minimum fixed header size of 40 bytes,
sending small packets uses the network inefficiently.

e The silly-window syndrome can occur when either by the
receiving application consuming data slowly or when the sending
application generating data slowly.

3

.28



SILLY WINDOW SYNDROME

1. Suppose a TCP connection has a window size of 1000 bytes
2. Receiving application consumes data only 10 bytes at a time

3. At intervals about equal to the RTT



SILLY WINDOW SYNDROME

e The sender sends bytes 1-1000.

e The receiving application consumes 10 bytes, numbered 1-10.

e The receiving TCP buffers the remaining 290 bytes and sends an
ACK reducing the window size to 10

o Upon receipt of the ACK, the sender sends 10 bytes numbered
1001-1010, the most it is permitted.

e In the meantime, the receiving app has consumed bytes 11-20.
o« Window size therefore remains at 10 in the next ACK.

e Sender sends bytes 1011-1020 while the application consumes
bytes 21-30.

3.30



SILLY WINDOW SYNDROME

Standard fix: RFC 1122
e The receiver to use its ACKs to keep the window at O until it has
consumed one full packet’s worth
= or half the window, for small window sizes.

e Then a full packet



CONNECTION MANAGEMENT

Before exchanging data, sender/receiver “handshake”:

« agree to establish connection (each knowing the other willing to

establish connection)

e dg8lIee on connection parameters

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
revBuf fer size
at server,client

network

g

Socket clientSocket =
newSocket ("hostname", "port number") ;

application

!D

connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
revBuffer Size
at server,client

network

Socket connectionSocket =

welcomeSocket.accept() ;

3

.32



AGREEING TO ESTABLISH A CONNECTION

2-way-handshake

~ Let’s talk

__T®ESTAB

OK
ESTAB

choose x 'ﬁq_cnnn&.
—»

acc conn(x)
ESTAB & —

ESTAB

Q: will 2-way handshake always work in network?

3.33



AGREEING TO ESTABLISH A CONNECTION

e variable delays

o retransmitted messages (e.g. req conn(x)) due to message loss

e message reordering

e can't “see” other side



AGREEING TO ESTABLISH A CONNECTION

2-way handshake failure scenarios:

g B

choose x ~Teq conn(x)
T—

_RESTAB

retransmit acc conn(x)
req_conn(x) p

ESTAB
req_conn(x)
connection
client™ x completes ~ [server -
terminates forgets x

ESTAB

half open connection!
(no client!)

req_conn(x)
ESTAB 'Zgatxﬂ) e

g B

choose x ~req conn(x)
';*- ESTAB

retransmit acc_conn(x)

t
retransmit data&+ 1)

data(x+1) ~ \

connection

client X completes  seryer

terminates \ forgets x
req_conn(x)

\.-o ESTAB

data(x+l}_h accent
data&+l}

3

.35



TCP 3-WAY HANDSHAKE

client state ,g
LISTEN T

choose init seq num, x
send TCP SYN msg

SYNSENT
received SYNACK(x)
indicates serveris live;
ESTA send ACK for SYNACK:

this segment may contain
client-to-server data

\

SYNbit=1, Seq=x

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

./'
T~

ACKbit=1, ACKnum=y+1

\\‘

choose init seq num, y
send TCP SYNACK
msqg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

ESTAB

3

.36



TCP 3-WAY HANDSHAKE: FSM

Socket connectionSocket =
welcomeSocket.accept () ;

A Socket clientSocket =
SYN(x) il newSocket ("hostname" , "port
SYNACK(seq=y,ACKnum=x+1) mmber”) :
create new socket for SYN(seq=x)

communication back to client

l ,.

‘ ‘SYNACK[5eq=y.ACKnu m=x+1]
ACK(ACKnum=y+1)

ACK(ACKnum=y+1)
A




TCP: CLOSING A CONNECTION

e client, server each close their side of connection
» send TCP segment with FIN bit =1
e respond to received FIN with ACK

= ON receiving

e simultaneous F

-IN, ACK can be com

N exchanges can be

ninec

with own FIN

nand

ed



TCP: CLOSING A CONNECTION

client state 4 n server state
ESTAB - ESTAB

l clientSocket.close() ...._______‘- | ‘
FIN. WAIT 1 can no longer FINbit=1, SECI=K\‘
n - send but can v
receive data _ _— CLOSE_WAIT
ACKbit=1; ACKnum=x+1 can still
FIN WAIT 2 wait for 5‘(3‘:[;*':-‘;4—-""" send data
LAST ACK
L 4 FINblt=l, Seq=y
TIMED WAIT — can no longer
- ~— send data
ACKbit=1; ACKnum=y+1
timed wait ~— v
for 2*¥max CLOSED

segment lifetime

CLOSED l

3

.39



PRINCIPLES OF CONGESTION CONTROL




PRINCIPLES OF CONGESTION CONTROL

O congestion: informally: “too many sources sending too much
data too fast for network to handle”

o different from flow control!
e manifestations:

» lost packets (buffer overflow at routers)

= long delays (queueing in router buffers)

e a top-10 problem!



CAUSES/COSTS OF CONGESTION: SCENARIO 1

e two senders, two receivers
e one router, infinite buffers
e output link capacity: R

e NO retransmission

original data: ;\'in

throughput: ;\'out
L ]
Host A
unlimited shared
output link buffers
L ]
Host&g b




CAUSES/COSTS OF CONGESTION: SCENARIO 1

RI2--—mmemme-
i | . |
5] I (4y] l
< | o |
| © |
k"ln R:r'2 A RJII’Z
* maximum * large delays as arrival
per-connection rate, A, approaches
throughput: R/2 capacity




CAUSES/COSTS OF CONGESTION: SCENARIO 2

e one router, finite buffers

e sender retransmission of timed-out packet

= Application-layer input = application-layer output: Ajn = Agut

= transport-layer input includes retransmissions: Ajn 2 Agut

?Lm - original data

“_'I_h{)ut

N

A'. : original data, plus
retransmitted data




CAUSES/COSTS OF CONGESTION: SCENARIO 2

idealization: perfect knowledge

e sender sends only when router buffers available

1128 EE—

3
<




CAUSES/COSTS OF CONGESTION: SCENARIO0 2

B\ original data

A
copy |H A'. : original data, plus
retransmitted data

¢
free buffer space!
> mmm
— 'Illllll. : ﬁ
Host B finite shared output '

link buffers




CAUSES/COSTS OF CONGESTION: SCENARIO 2

Idealization: known loss packets can be lost, dropped at router due
to full buffers

e sender only resends if packet known to be lost

2777 :

when gending at R/2,
some/packets are
retrafsmissions but
asymptotic goodput
is still R/2 (why?)

7|L’{:Iut

2. I-'{Ia’2




CAUSES/COSTS OF CONGESTION: SCENARIO0 2

s 7\,m : original data

copy B8

A", : original data, plus
retransmitted data

no buffer space! £
S mm -

Host B




CAUSES/COSTS OF CONGESTION: SCENARIO0 2

7\,m . original data )
A — —
. A", : original data, plus out
retransmitted data
free buffer space! / _

S mmm A

HEER
pe

Host B




CAUSES/COSTS OF CONGESTION: SCENARIO0 2

Realistic: duplicates

o Packets can be lost, dropped at router due to full buffers

e Sender times out prematurely, sending two copies, both of which
are delivered

RI2{---wnewmmem ey

. when sending at R/2,
I some packets are

i retransmissions

! including duplicated

! that are delivered!

y R/2
7“‘ir'l




CAUSES/COSTS OF CONGESTION: SCENARIO 2

X rd in '
= - A1
timeout= [ ' ?LDLH
S in

/ n
1
S




CAUSES/COSTS OF CONGESTION: SCENARIO 2

“costs” of congestion:

e more work (retrans) for given “goodput”
o unneeded retransmissions: link carries multiple copies of pkt

» decreasing goodput




CAUSES/COSTS OF CONGESTION: SCENARIO 3

e four senders
o multihop paths

e timeout/retransmit




CAUSES/COSTS OF CONGESTION: SCENARIO 3

Host A }Vnut

A : original data
| A", : original data, plus
I retransmitted data
|

e

Q: What happens as Ajpn and A'j increase ?

A: As red N'j increases, all arriving blue pkts at upper queue are
dropped, blue throughput — 0O




CAUSES/COSTS OF CONGESTION: SCENARIO 3

C/2
) £

&E/L

Ain’ cr

another “cost” of congestion:

« when packet dropped, any “upstream transmission capacity used
for that packet was wasted!




APPROACHES TOWARDS CONGESTION CONTROL

Two broad approaches towards congestion control:

e End-end congestion control

o Network-assisted congestion control




END-END CONGESTION CONTROL

e no explicit feedback from network
e congestion inferred from end-system observed loss, delay

e approach taken by TCP




NETWORK-ASSISTED CONGESTION CONTROL

e routers provide feedback to end systems

= single bit indicating congestion (SNA, DECbit, TCP/IP ECN,
ATM)

» explicit rate for sender to send at




TCP CONGESTION CONTROL



TCP CONGESTION CONTROL

3 components

1. Slow start
2. Congestion avoidance

3. Fast recovery



TCP CONGESTION CONTROL

Additive Increase Multiplicative Decrease
« approach: sender increases transmission rate (window size),
probing for usable bandwidth, until loss occurs

» additive increase: increase cwnd by 1 MSS every RTT until loss
detected

= multiplicative decrease: cut cwnd in half after loss



TCP CONGESTION CONTROL

additively increase window size ...
.... until loss occurs (then cut window in half)

:

cwnd: TCP sender
congestion window size
[

time

AIMD saw tooth behavior: probing for bandwidth



TCP CONGESTION CONTROL: DETAILS

ACKed
(“in-flight™)

e sender limits transmission:
LastByteSent - LastByteAcked < cwnd

e cwnd is dynamic, function of perceived network congestion



TGP CONGESTION CONTROL: DETAILS

@ TCP sending rate:

roughly: send cwnd bytes, wait RTT for ACKS, then send
more bytes rate ~ cwnd/RTT bytes/sec



TGP SLOW START

e when connection begins, increase rate exponentially until first
loss event:

» initially cwnd = 1 MSS

» double cwnd every RTT

» done by incrementing cwnd for every ACK received

o summary: initial rate is slow but ramps up exponentially fast



TGP SLOW START




TCP: DETECTING, REACTING T0 LOSS

e loss indicated by timeout:
» cwnd set to 1 MSS;

= window then grows exponentially (as in slow start) to threshold,
then grows linearly

e loss indicated by 3 duplicate ACKs: TCP RENO

» dup ACKSs indicate network capable of delivering some
segments

= cwnd is cut in half window then grows linearly

o TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)



TCP: SWITCHING FROM SLOW START T0 CA

e Q: when should the exponential increase switch to linear?

« A: when cwnd gets to 1/2 of its value before timeout.
O Implementation:

e variable ssthresh

e on loss event, ssthresh is set to 1/2 of cwnd just before
loss event



TCP: SWITCHING FROM SLOW START T0 CA

Congestion window
(in segments)

14—
TCP Reno
12—
10—
g_|ssthresh 7 _____
6_
ssthresh
4—
2_
0 | T T T T T T l

I [
o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round

.11



FAST RECOVERY

o cwnd increased by 1 MSS for every duplicate ack.
1. ack received — cwnd = ssthresh and goto CA

2. if timeout: goto slow start, cwnd = 1, ssthresh =
cwnd/2



SUMMARY: TC

NGESTION CONTROL

ssthresh = 64 KB
dupACKcount=10 >

(¢ 4 n timeout
ssthresh = cwnd/2
cwnd =1 MSS
dupACKcount =0
refransmit missing segment

dupACKcount==3

ssthresh= cwnd/2
cwnd = ssthresh + 3

N
=S New £ New's
: =
. Ak = new ACH W-‘i
x _ NEW.
duplicate ACK 550 F ownd = cwnd + MSS « (MSS/cwnd)
dupACKcount++  New ACK dupACKcount =0
ownd = cwnd+MSS fransmit new segment(s), as allowed
dupACKcount =0
A fransmit new segmeni(s), as alowed
cwnd =1 MSS
cwnd = ssthresh

M
.~ . -
= timeout
‘e <)Vssthresh = cwndr2 _
cwnd =1 MSS duplicate ACK

dupACKcount =0 dupACKcount++

retransmit missing segment

TELITN
A S AL
timeout't@] = Ng "é
ssthresh = cwnd/2 W-‘l
ownd = 1 New ACK
dupACKcount=0 —_—
retransmit missing segment dﬁgﬂ%gﬂfﬁm‘?g dupACKcount == 3

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

refransmit missing segment

Y

duplicate ACK

cwnd = cwnd + M35
transmit new segment(s), as allowed




TCP THROUGHPUT

e avg. TCP thruput as function of window size, R

» ignore slow start, assume always ¢

« W: window size (measured in bytes) where loss occurs

172

ata to senc

= avg. window size (# in-flight bytes) is 3/4 W

» avg. thruput is 3/4 W per RTT

avg TCP throughput = (3 W)/ (4 RTT) bytes/sec

W —
w /I/l/l/l/l/

.14



TCP VERSIONS

Multiple TCP Versions exists

cat /proc/sys/net/ipv4/tcp available congestion control
cd /lib/modules/$(uname -r)/kernel/net/ipv4



TCP VERSIONS

In the C language, we can select the linux congestion control
mechanism, after socket creation but before connection, by

including the setsockopt()

#include <netinet/in.h>
#include <netinet/tcp.h>

char * cong algorithm = "vegas";

int slen = strlen( cong algorithm ) + 1;

int rc = setsockopt( sock, IPPROTO TCP, TCP CONGESTION, cong algorithm, slen);
if (rc < 0) { /* error */ }



TCP FUTURES: TCP OVER “LONG, FAT PIPES™

o example: 1500 byte segments, 100ms RTT, want 10 Gbps
throughput

e requires W = 83,333 in-flight segments

e throughput in terms of segment loss probability, L [Mathis 1997]:
TCP throughput = (1.22 MSS)/( RTT sqrt(L) ) — to achieve 10

Gbps throughput, need a loss rate of L = 2 10710
- a very small loss rate!

e new versions of TCP for high-speed



TGP CUBIC

TCP Cubic is currently the default linux congestion-control
implementation.

TCP Cubic has a number of interrelated features, in an attempt to
address several TCP issues:



TCP FAIRNESS

© Fairness goal:

if K TCP sessions share same bottleneck link of bandwidth R,
each should have average rate of R/K

TCP connection 1

g
—
bottleneck

capacity R

TCP connection 2




o additive increase gives s

o multiplicative decrease c

WHY IS TCP FAIR?

Two competing sessions:

ope of 1, as throughout increases

ecreases throughput proportionally

Connection 2 throughput o

equal bandwidth share
g

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 1 throughput R

5.20



FAIRNESS (MORE)

©® Fairness and UDP

o multimedia apps often do not use TCP

= do not want rate throttled by congestion control
e instead use UDP:

» send audio/video at constant rate, tolerate packet loss

5.21



FAIRNESS (MORE)

©® Fairness, parallel TCP connections

o application can open multiple parallel connections between two
hosts

e Web browsers do this

e e.g., link of rate R with 92 existing connections:
= new app asks for 1 TCP, gets rate R/10
= new app asks for 11 TCPs, gets R/2

5.22



CHAPTER 3: SUMMARY

e principles behind transport layer services:
= flow control
= congestion control

e instantiation, implementation in the Internet

s JCP
Next:

o leaving the network “edge” (application, transport layers)

e into the network “core”



