CECTURE 4 - JRANSPORT LAYER (2)

GOALS (1)

- Understand principles behind transport layer services:
 - Flow control
 - Congestion control

GOALS (2)

- Learn about Internet transport layer protocols:
 - TCP: connection-oriented reliable transport
 - TCP congestion control

CONNECTION-ORIENTED TRANSPORT: TCP

TCP: OVERVIEW

- RFCs: 793,1122,1323, 2018, 2581
- Point-to-point:
 - one sender, one receiver
- Reliable, in-order byte steam:
 - no "message boundaries"
- Pipelined:
 - TCP congestion and flow control set window size

TCP: OVERVIEW

Full duplex data:

- bi-directional data flow in same connection
- MSS: maximum segment size

Connection-oriented:

 handshaking (exchange of control msgs) inits sender, receiver state before data exchange

Flow controlled:

sender will not overwhelm receiver

TCP SEGMENT STRUCTURE

TCP SEQ. NUMBERS, ACKS

TCP SEQ. NUMBERS, ACKS

Sequence numbers:

• Byte stream "number" of first byte in segment's data

Acknowledgements:

- Seq # of next byte expected from other side
- Cumulative ACK

Q: how receiver handles out-of-order segments?

A: TCP spec doesn't say, - up to implementor

TCP SEQ. NUMBERS, ACKS

TCP ROUND TRIP TIME, TIMEOUT

- Q: how to set TCP timeout value?
- Longer than RTT
 - But RTT varies
- too short: premature timeout, unnecessary retransmissions
- too long: slow reaction to segment loss

TCP ROUND TRIP TIME, TIMEOUT

- **Q**:how to estimate RTT?
- SampleRTT: measured time from segment transmission until ACK receipt
 - ignore retransmissions
- SampleRTT will vary, want estimated RTT "smoother"
 - average several recent measurements, not just current SampleRTT

TCP ROUND TRIP TIME, TIMEOUT

EstimatedRTT = $(1-\alpha)^*$ EstimatedRTT + α^* SampleRTT

- exponential weighted moving average
- influence of past sample decreases exponentially fast
- typical value: $\alpha = 0.125$

TCP RTT - TIMEOUT INTERVAL

- EstimatedRTT plus "safety margin"
- large variation in EstimatedRTT → larger safety margin

Estimate SampleRTT deviation from EstimatedRTT: $DevRTT = (1-\beta) * DevRTT + \beta * | SampleRTT-EstimatedRTT|$ $Typically, \beta = 0.25$

TCP RELIABLE DATA TRANSFER

- TCP creates rdt service on top of IP's unreliable service
 - Pipelined segments
 - Cumulative acks
 - Single retransmission timer
- Retransmissions triggered by:
 - Timeout events
 - Duplicate acks
- Let's initially consider simplified TCP sender:
 - ignore duplicate acks, flow control, congestion control

TCP SENDER EVENTS:

Data received from app:

- create segment with seq #
- seq # is byte-stream number of first data byte in segment
- start timer if not already running
 - think of timer as for oldest unacked segment
 - expiration interval: TimeOutInterval

TCP SENDER EVENTS:

Timeout:

- Retransmit segment that caused timeout
- Restart timer

Ack recieved:

- If ack acknowledges previously unacked segments
 - Update what is known to be ACKed
 - Start timer if there are still unacked segments

TCP SENDER (SIMPLIFIED)

TCP: RETRANSMISSION SCENARIOS

TCP: RETRANSMISSION SCENARIOS

TCP ACK GENERATION

RFC 1122, RFC 2581

LVONT	2 t	racal	MAR
Event	aı	ICCCI	VCI

TCP receiver action

arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK

arrival of in-order segment with expected seq #. One other segment has ACK pending

immediately send single cumulative ACK, ACKing both in-order segments

TCP ACK GENERATION

RFC 1122, RFC 2581

		4			•
– 1			2 t	race	211/Dr
	/ CI	IL	aı	ICC	eiver

TCP receiver action

arrival of out-of-order segment higher-than-expect seq. $\# \rightarrow$ Gap detected

immediately send duplicate

ACK, indicating seq. # of next
expected byte

arrival of segment that partially or completely fills gap

immediate send ACK, provided that segment starts at lower end of gap

TCP FAST RETRANSMIT

- Time-out period often relatively long:
 - Long delay before resending lost packet
- Detect lost segments via duplicate ACKs.
 - Sender often sends many segments back-to-back
 - If segment is lost, there will likely be many duplicate ACKs.

TCP FAST RETRANSMIT

TCP fast retransmit

if sender receives 3 ACKs for same data ("triple duplicate ACKs"), resend unacked segment with smallest seq #

likely that unacked segment lost, so don't wait for timeout

TCP FAST RETRANSMIT

TCP RDT

♀ Is TCP a GBN or SR protocol?

Flow control

Receiver controls sender, so sender won't overflow receiver's buffer by transmitting too much, too fast

- Receiver "advertises" free buffer space by including rwnd value in TCP header of receiver-to-sender segments
 - RcvBuffer size set via socket options (typical default is 4096 bytes)
 - many operating systems autoadjust RcvBuffer
- Sender limits amount of unacked ("in-flight") data to receiver's rwnd value
- Guarantees receive buffer will not overflow

- The silly-window syndrome is a term for a scenario in which TCP transfers only small amounts of data at a time.
- TCP/IP packets have a minimum fixed header size of 40 bytes, sending small packets uses the network inefficiently.
- The silly-window syndrome can occur when either by the receiving application consuming data slowly or when the sending application generating data slowly.

- 1. Suppose a TCP connection has a window size of 1000 bytes
- 2. Receiving application consumes data only 10 bytes at a time
- 3. At intervals about equal to the RTT

- The sender sends bytes 1-1000.
- The receiving application consumes 10 bytes, numbered 1-10.
- The receiving TCP buffers the remaining 990 bytes and sends an ACK reducing the window size to 10
- Upon receipt of the ACK, the sender sends 10 bytes numbered 1001-1010, the most it is permitted.
- In the meantime, the receiving app has consumed bytes 11-20.
- Window size therefore remains at 10 in the next ACK.
- Sender sends bytes 1011-1020 while the application consumes bytes 21-30.

Standard fix: RFC 1122

- The receiver to use its ACKs to keep the window at 0 until it has consumed one full packet's worth
 - or half the window, for small window sizes.
- Then a full packet

CONNECTION MANAGEMENT

Before exchanging data, sender/receiver "handshake":

- agree to establish connection (each knowing the other willing to establish connection)
- agree on connection parameters

AGREEING TO ESTABLISH A CONNECTION

2-way-handshake

Q: will 2-way handshake always work in network?

AGREEING TO ESTABLISH A CONNECTION

- variable delays
- retransmitted messages (e.g. req_conn(x)) due to message loss
- message reordering
- can't "see" other side

AGREEING TO ESTABLISH A CONNECTION

2-way handshake failure scenarios:

TCP 3-WAY HANDSHAKE

TCP 3-WAY HANDSHAKE: FSM

TCP: CLOSING A CONNECTION

- client, server each close their side of connection
 - send TCP segment with FIN bit = 1
- respond to received FIN with ACK
 - on receiving FIN, ACK can be combined with own FIN
- simultaneous FIN exchanges can be handled

TCP: CLOSING A CONNECTION

PRINCIPLES OF CONGESTION CONTROL

PRINCIPLES OF CONGESTION CONTROL

- congestion: informally: "too many sources sending too much data too fast for network to handle"
 - different from flow control!
 - manifestations:
 - lost packets (buffer overflow at routers)
 - long delays (queueing in router buffers)
 - a top-10 problem!

- two senders, two receivers
- one router, infinite buffers
- output link capacity: R
- no retransmission

- one router, **finite** buffers
- sender retransmission of timed-out packet
 - Application-layer input = application-layer output: $\lambda_{in} = \lambda_{out}$
 - transport-layer input includes retransmissions: λ_{in} ≥ λ_{out}

idealization: perfect knowledge

sender sends only when router buffers available

Idealization: *known loss* packets can be lost, dropped at router due to full buffers

sender only resends if packet known to be lost

Realistic: *duplicates*

- Packets can be lost, dropped at router due to full buffers
- Sender times out prematurely, sending two copies, both of which are delivered

"costs" of congestion:

- more work (retrans) for given "goodput"
- unneeded retransmissions: link carries multiple copies of pkt
 - decreasing goodput

- four senders
- multihop paths
- timeout/retransmit

Q: What happens as λ_{in} and λ'_{in} increase?

A: As red λ'_{in} increases, all arriving blue pkts at upper queue are dropped, blue throughput $\rightarrow 0$

another "cost" of congestion:

 when packet dropped, any "upstream transmission capacity used for that packet was wasted!

APPROACHES TOWARDS CONGESTION CONTROL

Two broad approaches towards congestion control:

- End-end congestion control
- Network-assisted congestion control

END-END CONGESTION CONTROL

- no explicit feedback from network
- congestion inferred from end-system observed loss, delay
- approach taken by TCP

NETWORK-ASSISTED CONGESTION CONTROL

- routers provide feedback to end systems
 - single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM)
 - explicit rate for sender to send at

3 components

- 1. Slow start
- 2. Congestion avoidance
- 3. Fast recovery

Additive Increase Multiplicative Decrease

- approach: sender increases transmission rate (window size),
 probing for usable bandwidth, until loss occurs
 - additive increase: increase cwnd by 1 MSS every RTT until loss detected
 - multiplicative decrease: cut cwnd in half after loss

AIMD saw tooth behavior: probing for bandwidth

TCP CONGESTION CONTROL: DETAILS

- sender limits transmission:
 - LastByteSent LastByteAcked ≤ cwnd
- cwnd is dynamic, function of perceived network congestion

TCP CONGESTION CONTROL: DETAILS

TCP sending rate:

roughly: send cwnd bytes, wait RTT for ACKS, then send more bytes rate ~ cwnd/RTT bytes/sec

TCP SLOW START

- when connection begins, increase rate exponentially until first loss event:
 - initially cwnd = 1 MSS
 - double cwnd every RTT
 - done by incrementing cwnd for every ACK received
- summary: initial rate is slow but ramps up exponentially fast

TCP SLOW START

TCP: DETECTING, REACTING TO LOSS

- loss indicated by timeout:
 - cwnd set to 1 MSS;
 - window then grows exponentially (as in slow start) to threshold,
 then grows linearly
- loss indicated by 3 duplicate ACKs: TCP RENO
 - dup ACKs indicate network capable of delivering some segments
 - cwnd is cut in half window then grows linearly
- TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

TCP: SWITCHING FROM SLOW START TO CA

- Q: when should the exponential increase switch to linear?
- A: when cwnd gets to 1/2 of its value before timeout.
- Implementation:
 - variable ssthresh
 - on loss event, ssthresh is set to 1/2 of cwnd just before loss event

TCP: SWITCHING FROM SLOW START TO CA

FAST RECOVERY

- cwnd increased by 1 MSS for every duplicate ack.
 - 1. ack received \rightarrow cwnd = ssthresh and goto CA
 - 2. if timeout: goto slow start, cwnd = 1, ssthresh = cwnd/2

SUMMARY: TCP CONGESTION CONTROL

TCP THROUGHPUT

- avg. TCP thruput as function of window size, RTT?
 - ignore slow start, assume always data to send
- W: window size (measured in bytes) where loss occurs
 - avg. window size (# in-flight bytes) is 3/4 W
 - avg. thruput is 3/4 W per RTT

avg TCP throughput = (3 W)/ (4 RTT) bytes/sec

TCP VERSIONS

Multiple TCP Versions exists

cat /proc/sys/net/ipv4/tcp_available_congestion_control
cd /lib/modules/\$(uname -r)/kernel/net/ipv4

TCP VERSIONS

In the C language, we can select the linux congestion control mechanism, after socket creation but before connection, by including the setsockopt()

```
#include <netinet/in.h>
#include <netinet/tcp.h>
...
char * cong_algorithm = "vegas";
int slen = strlen( cong_algorithm ) + 1;
int rc = setsockopt( sock, IPPROTO_TCP, TCP_CONGESTION, cong_algorithm, slen);
if (rc < 0) { /* error */ }</pre>
```

TCP FUTURES: TCP OVER "LONG, FAT PIPES"

- example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput
- requires W = 83,333 in-flight segments
- throughput in terms of segment loss probability, L [Mathis 1997]:
 TCP throughput = (1.22 MSS)/(RTT sqrt(L)) → to achieve 10
 Gbps throughput, need a loss rate of L = 2 10⁻¹⁰
 – a very small loss rate!
- new versions of TCP for high-speed

TCP CUBIC

TCP Cubic is currently the default linux congestion-control implementation.

TCP Cubic has a number of interrelated features, in an attempt to address several TCP issues:

TCP FAIRNESS

• Fairness goal:

if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K

WHY IS TCP FAIR?

Two competing sessions:

- additive increase gives slope of 1, as throughout increases
- multiplicative decrease decreases throughput proportionally

FAIRNESS (MORE)

- Fairness and UDP
- multimedia apps often do not use TCP
 - do not want rate throttled by congestion control
- instead use UDP:
 - send audio/video at constant rate, tolerate packet loss

FAIRNESS (MORE)

- Fairness, parallel TCP connections
- application can open multiple parallel connections between two hosts
- web browsers do this
- e.g., link of rate R with 9 existing connections:
 - new app asks for 1 TCP, gets rate R/10
 - new app asks for 11 TCPs, gets R/2

CHAPTER 3: SUMMARY

- principles behind transport layer services:
 - flow control
 - congestion control
- instantiation, implementation in the Internet
 - TCP

Next:

- leaving the network "edge" (application, transport layers)
- into the network "core"