
LECTURE 4 - TRANSPORTLECTURE 4 - TRANSPORT
LAYER (2)LAYER (2)

1

GOALS (1)GOALS (1)
Understand principles behind transport layer services:

Flow control

Conges�on control

2 . 1

GOALS (2)GOALS (2)
Learn about Internet transport layer protocols:

TCP: connec�on-oriented reliable transport

TCP conges�on control

2 . 2

CONNECTION-ORIENTED TRANSPORT: TCPCONNECTION-ORIENTED TRANSPORT: TCP

3 . 1

TCP: OVERVIEWTCP: OVERVIEW
RFCs: 793,1122,1323, 2018, 2581

Point-to-point:

one sender, one receiver

Reliable, in-order byte steam:

no "message boundaries"

Pipelined:

TCP conges�on and flow control set window size

3 . 2

TCP: OVERVIEWTCP: OVERVIEW
Full duplex data:

bi-direc�onal data flow in same connec�on

MSS: maximum segment size

Connec�on-oriented:

handshaking (exchange of control msgs) inits sender, receiver
state before data exchange

Flow controlled:

sender will not overwhelm receiver

3 . 3

TCP SEGMENT STRUCTURETCP SEGMENT STRUCTURE

3 . 4

TCP SEQ. NUMBERS, ACKSTCP SEQ. NUMBERS, ACKS

3 . 5

TCP SEQ. NUMBERS, ACKSTCP SEQ. NUMBERS, ACKS
Sequence numbers:

Byte stream “number” of first byte in segment’s data

Acknowledgements:

Seq # of next byte expected from other side

Cumula�ve ACK

Q: how receiver handles out-of-order segments?
A: TCP spec doesn’t say, - up to implementor

3 . 6

TCP SEQ. NUMBERS, ACKSTCP SEQ. NUMBERS, ACKS

3 . 7

TCP ROUND TRIP TIME, TIMEOUTTCP ROUND TRIP TIME, TIMEOUT
Q: how to set TCP �meout value?

Longer than RTT

But RTT varies

too short: premature �meout, unnecessary retransmissions

too long: slow reac�on to segment loss

3 . 8

TCP ROUND TRIP TIME, TIMEOUTTCP ROUND TRIP TIME, TIMEOUT
Q:how to es�mate RTT?

SampleRTT: measured �me from segment transmission un�l ACK
receipt

ignore retransmissions

SampleRTT will vary, want es�mated RTT “smoother”

average several recent measurements, not just current
SampleRTT

3 . 9

TCP ROUND TRIP TIME, TIMEOUTTCP ROUND TRIP TIME, TIMEOUT
EstimatedRTT = (1- α) * EstimatedRTT + α * SampleRTT

exponen�al weighted moving average

influence of past sample decreases exponen�ally fast

typical value: α = 0.125

3 . 10

TCP RTT - TIMEOUT INTERVALTCP RTT - TIMEOUT INTERVAL
Es�matedRTT plus “safety margin”

large varia�on in Es�matedRTT → larger safety margin

Es�mate SampleRTT devia�on from Es�matedRTT:
DevRTT = (1-β) * DevRTT + β * | SampleRTT-EstimatedRTT|

Typically, β = 0.25

3 . 11

TCP RELIABLE DATA TRANSFERTCP RELIABLE DATA TRANSFER
TCP creates rdt service on top of IP’s unreliable service

Pipelined segments

Cumula�ve acks

Single retransmission �mer

Retransmissions triggered by:

Timeout events

Duplicate acks

Let’s ini�ally consider simplified TCP sender:

ignore duplicate acks, flow control, conges�on control
3 . 12

TCP SENDER EVENTS:TCP SENDER EVENTS:
Data received from app:

create segment with seq #

seq # is byte-stream number of first data byte in segment

start �mer if not already running

think of �mer as for oldest unacked segment

expira�on interval: TimeOutInterval

3 . 13

TCP SENDER EVENTS:TCP SENDER EVENTS:
Timeout:

Retransmit segment that caused �meout

Restart �mer

Ack recieved:

If ack acknowledges previously unacked segments

Update what is known to be ACKed

Start �mer if there are s�ll unacked segments

3 . 14

TCP SENDER (SIMPLIFIED)TCP SENDER (SIMPLIFIED)

3 . 15

TCP: RETRANSMISSION SCENARIOSTCP: RETRANSMISSION SCENARIOS

3 . 16

TCP: RETRANSMISSION SCENARIOSTCP: RETRANSMISSION SCENARIOS

3 . 17

TCP ACK GENERATIONTCP ACK GENERATION
RFC 1122, RFC 2581

Event at receiver TCP receiver ac�on

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

delayed ACK. Wait up to
500ms for next segment. If no
next segment, send ACK

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

immediately send single
cumula�ve ACK, ACKing both
in-order segments

3 . 18

TCP ACK GENERATIONTCP ACK GENERATION
RFC 1122, RFC 2581

Event at receiver TCP receiver ac�on

arrival of out-of-order segment
higher-than-expect seq. # →
Gap detected

immediately send duplicate
ACK, indica�ng seq. # of next
expected byte

arrival of segment that par�ally
or completely fills gap

immediate send ACK, provided
that segment starts at lower
end of gap

3 . 19

TCP FAST RETRANSMITTCP FAST RETRANSMIT
Time-out period o�en rela�vely long:

Long delay before resending lost packet

Detect lost segments via duplicate ACKs.

Sender o�en sends many segments back-to-back

If segment is lost, there will likely be many duplicate ACKs.

3 . 20

TCP FAST RETRANSMITTCP FAST RETRANSMIT
TCP fast retransmit

if sender receives 3 ACKs for same data (“triple duplicate
ACKs”), resend unacked segment with smallest seq #

likely that unacked segment lost, so don’t wait for �meout

3 . 21

TCP FAST RETRANSMITTCP FAST RETRANSMIT

3 . 22

TCP RDTTCP RDT
Is TCP a GBN or SR protocol?

3 . 23

TCP FLOW CONTROLTCP FLOW CONTROL
Flow control

Receiver controls sender, so sender won’t overflow receiver’s
buffer by transmi�ng too much, too fast

3 . 24

TCP FLOW CONTROLTCP FLOW CONTROL

3 . 25

TCP FLOW CONTROLTCP FLOW CONTROL
Receiver “adver�ses” free buffer space by including rwnd value in
TCP header of receiver-to-sender segments

RcvBuffer size set via socket op�ons (typical default is 4096
bytes)

many opera�ng systems autoadjust RcvBuffer

Sender limits amount of unacked (“in-flight”) data to receiver’s
rwnd value

Guarantees receive buffer will not overflow

3 . 26

TCP FLOW CONTROLTCP FLOW CONTROL

3 . 27

SILLY WINDOW SYNDROMESILLY WINDOW SYNDROME
The silly-window syndrome is a term for a scenario in which
TCP transfers only small amounts of data at a �me.

TCP/IP packets have a minimum fixed header size of 40 bytes,
sending small packets uses the network inefficiently.

The silly-window syndrome can occur when either by the
receiving applica�on consuming data slowly or when the sending
applica�on genera�ng data slowly.

3 . 28

SILLY WINDOW SYNDROMESILLY WINDOW SYNDROME
1. Suppose a TCP connec�on has a window size of 1000 bytes

2. Receiving applica�on consumes data only 10 bytes at a �me

3. At intervals about equal to the RTT

3 . 29

SILLY WINDOW SYNDROMESILLY WINDOW SYNDROME
The sender sends bytes 1-1000.

The receiving applica�on consumes 10 bytes, numbered 1-10.

The receiving TCP buffers the remaining 990 bytes and sends an
ACK reducing the window size to 10

Upon receipt of the ACK, the sender sends 10 bytes numbered
1001-1010, the most it is permi�ed.

In the mean�me, the receiving app has consumed bytes 11-20.

Window size therefore remains at 10 in the next ACK.

Sender sends bytes 1011-1020 while the applica�on consumes
bytes 21-30.

3 . 30

SILLY WINDOW SYNDROMESILLY WINDOW SYNDROME
Standard fix: RFC 1122

The receiver to use its ACKs to keep the window at 0 un�l it has
consumed one full packet’s worth

or half the window, for small window sizes.

Then a full packet

3 . 31

CONNECTION MANAGEMENTCONNECTION MANAGEMENT
Before exchanging data, sender/receiver “handshake”:

agree to establish connec�on (each knowing the other willing to
establish connec�on)

agree on connec�on parameters

3 . 32

AGREEING TO ESTABLISH A CONNECTIONAGREEING TO ESTABLISH A CONNECTION
2-way-handshake

Q: will 2-way handshake always work in network?

3 . 33

AGREEING TO ESTABLISH A CONNECTIONAGREEING TO ESTABLISH A CONNECTION
variable delays

retransmi�ed messages (e.g. req_conn(x)) due to message loss

message reordering

can’t “see” other side

3 . 34

AGREEING TO ESTABLISH A CONNECTIONAGREEING TO ESTABLISH A CONNECTION
2-way handshake failure scenarios:

3 . 35

TCP 3-WAY HANDSHAKETCP 3-WAY HANDSHAKE

3 . 36

TCP 3-WAY HANDSHAKE: FSMTCP 3-WAY HANDSHAKE: FSM

3 . 37

TCP: CLOSING A CONNECTIONTCP: CLOSING A CONNECTION
client, server each close their side of connec�on

send TCP segment with FIN bit = 1

respond to received FIN with ACK

on receiving FIN, ACK can be combined with own FIN

simultaneous FIN exchanges can be handled

3 . 38

TCP: CLOSING A CONNECTIONTCP: CLOSING A CONNECTION

3 . 39

PRINCIPLES OF CONGESTION CONTROLPRINCIPLES OF CONGESTION CONTROL

4 . 1

PRINCIPLES OF CONGESTION CONTROLPRINCIPLES OF CONGESTION CONTROL
conges�on: informally: “too many sources sending too much
data too fast for network to handle”

different from flow control!

manifesta�ons:

lost packets (buffer overflow at routers)

long delays (queueing in router buffers)

a top-10 problem!

4 . 2

CAUSES/COSTS OF CONGESTION: SCENARIO 1CAUSES/COSTS OF CONGESTION: SCENARIO 1
two senders, two receivers

one router, infinite buffers

output link capacity: R

no retransmission

4 . 3

CAUSES/COSTS OF CONGESTION: SCENARIO 1CAUSES/COSTS OF CONGESTION: SCENARIO 1

4 . 4

CAUSES/COSTS OF CONGESTION: SCENARIO 2CAUSES/COSTS OF CONGESTION: SCENARIO 2
one router, finite buffers

sender retransmission of �med-out packet

Applica�on-layer input = applica�on-layer output: λin = λout

transport-layer input includes retransmissions: λin ≥ λout

4 . 5

CAUSES/COSTS OF CONGESTION: SCENARIO 2CAUSES/COSTS OF CONGESTION: SCENARIO 2
idealiza�on: perfect knowledge

sender sends only when router buffers available

4 . 6

CAUSES/COSTS OF CONGESTION: SCENARIO 2CAUSES/COSTS OF CONGESTION: SCENARIO 2

4 . 7

CAUSES/COSTS OF CONGESTION: SCENARIO 2CAUSES/COSTS OF CONGESTION: SCENARIO 2
Idealiza�on: known loss packets can be lost, dropped at router due

to full buffers

sender only resends if packet known to be lost

4 . 8

CAUSES/COSTS OF CONGESTION: SCENARIO 2CAUSES/COSTS OF CONGESTION: SCENARIO 2

4 . 9

CAUSES/COSTS OF CONGESTION: SCENARIO 2CAUSES/COSTS OF CONGESTION: SCENARIO 2

4 . 10

CAUSES/COSTS OF CONGESTION: SCENARIO 2CAUSES/COSTS OF CONGESTION: SCENARIO 2
Realis�c: duplicates

Packets can be lost, dropped at router due to full buffers

Sender �mes out prematurely, sending two copies, both of which
are delivered

4 . 11

CAUSES/COSTS OF CONGESTION: SCENARIO 2CAUSES/COSTS OF CONGESTION: SCENARIO 2

4 . 12

CAUSES/COSTS OF CONGESTION: SCENARIO 2CAUSES/COSTS OF CONGESTION: SCENARIO 2
“costs” of conges�on:

more work (retrans) for given “goodput”

unneeded retransmissions: link carries mul�ple copies of pkt

decreasing goodput

4 . 13

CAUSES/COSTS OF CONGESTION: SCENARIO 3CAUSES/COSTS OF CONGESTION: SCENARIO 3
four senders

mul�hop paths

�meout/retransmit

4 . 14

CAUSES/COSTS OF CONGESTION: SCENARIO 3CAUSES/COSTS OF CONGESTION: SCENARIO 3

Q: What happens as λin and λ'in increase ?
A: As red λ'in increases, all arriving blue pkts at upper queue are

dropped, blue throughput → 0

4 . 15

CAUSES/COSTS OF CONGESTION: SCENARIO 3CAUSES/COSTS OF CONGESTION: SCENARIO 3

another “cost” of conges�on:

when packet dropped, any “upstream transmission capacity used
for that packet was wasted!

4 . 16

APPROACHES TOWARDS CONGESTION CONTROLAPPROACHES TOWARDS CONGESTION CONTROL
Two broad approaches towards conges�on control:

End-end conges�on control

Network-assisted conges�on control

4 . 17

END-END CONGESTION CONTROLEND-END CONGESTION CONTROL
no explicit feedback from network

conges�on inferred from end-system observed loss, delay

approach taken by TCP

4 . 18

NETWORK-ASSISTED CONGESTION CONTROLNETWORK-ASSISTED CONGESTION CONTROL
routers provide feedback to end systems

single bit indica�ng conges�on (SNA, DECbit, TCP/IP ECN,
ATM)

explicit rate for sender to send at

4 . 19

TCP CONGESTION CONTROLTCP CONGESTION CONTROL

5 . 1

TCP CONGESTION CONTROLTCP CONGESTION CONTROL
3 components

1. Slow start

2. Conges�on avoidance

3. Fast recovery

5 . 2

TCP CONGESTION CONTROLTCP CONGESTION CONTROL
Addi�ve Increase Mul�plica�ve Decrease

approach: sender increases transmission rate (window size),
probing for usable bandwidth, un�l loss occurs

addi�ve increase: increase cwnd by 1 MSS every RTT un�l loss
detected

mul�plica�ve decrease: cut cwnd in half a�er loss

5 . 3

TCP CONGESTION CONTROLTCP CONGESTION CONTROL

AIMD saw tooth behavior: probing for bandwidth

5 . 4

TCP CONGESTION CONTROL: DETAILSTCP CONGESTION CONTROL: DETAILS

sender limits transmission:
LastByteSent - LastByteAcked ≤ cwnd

cwnd is dynamic, func�on of perceived network conges�on

5 . 5

TCP CONGESTION CONTROL: DETAILSTCP CONGESTION CONTROL: DETAILS
TCP sending rate:

roughly: send cwnd bytes, wait RTT for ACKS, then send
more bytes rate ~ cwnd/RTT bytes/sec

5 . 6

TCP SLOW STARTTCP SLOW START
when connec�on begins, increase rate exponen�ally un�l first
loss event:

ini�ally cwnd = 1 MSS

double cwnd every RTT

done by incremen�ng cwnd for every ACK received

summary: ini�al rate is slow but ramps up exponen�ally fast

5 . 7

TCP SLOW STARTTCP SLOW START

5 . 8

TCP: DETECTING, REACTING TO LOSSTCP: DETECTING, REACTING TO LOSS
loss indicated by �meout:

cwnd set to 1 MSS;

window then grows exponen�ally (as in slow start) to threshold,
then grows linearly

loss indicated by 3 duplicate ACKs: TCP RENO

dup ACKs indicate network capable of delivering some
segments

cwnd is cut in half window then grows linearly

TCP Tahoe always sets cwnd to 1 (�meout or 3 duplicate acks)
5 . 9

TCP: SWITCHING FROM SLOW START TO CATCP: SWITCHING FROM SLOW START TO CA
Q: when should the exponen�al increase switch to linear?

A: when cwnd gets to 1/2 of its value before �meout.

Implementa�on:

variable ssthresh

on loss event, ssthresh is set to 1/2 of cwnd just before
loss event

5 . 10

TCP: SWITCHING FROM SLOW START TO CATCP: SWITCHING FROM SLOW START TO CA

5 . 11

FAST RECOVERYFAST RECOVERY
cwnd increased by 1 MSS for every duplicate ack.

1. ack received → cwnd = ssthresh and goto CA

2. if �meout: goto slow start, cwnd = 1, ssthresh =
cwnd/2

5 . 12

SUMMARY: TCP CONGESTION CONTROLSUMMARY: TCP CONGESTION CONTROL

5 . 13

TCP THROUGHPUTTCP THROUGHPUT
avg. TCP thruput as func�on of window size, RTT?

ignore slow start, assume always data to send

W: window size (measured in bytes) where loss occurs

avg. window size (# in-flight bytes) is 3/4 W

avg. thruput is 3/4 W per RTT

avg TCP throughput = (3 W)/ (4 RTT) bytes/sec

5 . 14

TCP VERSIONSTCP VERSIONS
Mul�ple TCP Versions exists

cat /proc/sys/net/ipv4/tcp_available_congestion_control

cd /lib/modules/$(uname -r)/kernel/net/ipv4

5 . 15

TCP VERSIONSTCP VERSIONS
In the C language, we can select the linux conges�on control
mechanism, a�er socket crea�on but before connec�on, by

including the setsockopt()
#include <netinet/in.h>

#include <netinet/tcp.h>

...

char * cong_algorithm = "vegas";

int slen = strlen(cong_algorithm) + 1;

int rc = setsockopt(sock, IPPROTO_TCP, TCP_CONGESTION, cong_algorithm, slen);

if (rc < 0) { /* error */ }

5 . 16

TCP FUTURES: TCP OVER “LONG, FAT PIPES”TCP FUTURES: TCP OVER “LONG, FAT PIPES”
example: 1500 byte segments, 100ms RTT, want 10 Gbps
throughput

requires W = 83,333 in-flight segments

throughput in terms of segment loss probability, L [Mathis 1997]:
TCP throughput = (1.22 MSS)/(RTT sqrt(L)) → to achieve 10
Gbps throughput, need a loss rate of L = 2 10-10
– a very small loss rate!

new versions of TCP for high-speed

5 . 17

TCP CUBICTCP CUBIC
TCP Cubic is currently the default linux conges�on-control

implementa�on.

TCP Cubic has a number of interrelated features, in an a�empt to
address several TCP issues:

5 . 18

TCP FAIRNESSTCP FAIRNESS
Fairness goal:

if K TCP sessions share same bo�leneck link of bandwidth R,
each should have average rate of R/K

5 . 19

WHY IS TCP FAIR?WHY IS TCP FAIR?
Two compe�ng sessions:

addi�ve increase gives slope of 1, as throughout increases

mul�plica�ve decrease decreases throughput propor�onally

5 . 20

FAIRNESS (MORE)FAIRNESS (MORE)
Fairness and UDP

mul�media apps o�en do not use TCP

do not want rate thro�led by conges�on control

instead use UDP:

send audio/video at constant rate, tolerate packet loss

5 . 21

FAIRNESS (MORE)FAIRNESS (MORE)
Fairness, parallel TCP connec�ons

applica�on can open mul�ple parallel connec�ons between two
hosts

web browsers do this

e.g., link of rate R with 9 exis�ng connec�ons:

new app asks for 1 TCP, gets rate R/10

new app asks for 11 TCPs, gets R/2

5 . 22

CHAPTER 3: SUMMARYCHAPTER 3: SUMMARY
principles behind transport layer services:

flow control

conges�on control

instan�a�on, implementa�on in the Internet

TCP

Next:

leaving the network “edge” (applica�on, transport layers)

into the network “core”

6

