SECURITY IN NETWURKS

https //WWW youtube. com/watch7v RfAdux3X|dM

https://www.youtube.com/watch?v=RfAdux3XidM

GOALS

o Understand principles of network security:
» Cryptography and its many uses beyond “confidentiality”
= Authentication
» Message integrity

e Securing Email - PGP

WHAT IS NETWORK SECURITY?

o Confidentiality: only sender, intended receiver should
“understand” message contents

= sender encrypts message
= receiver decrypts message

o Authentication: sender, receiver want to confirm identity of each
other

o Message integrity: sender, receiver want to ensure message not
altered (in transit, or afterwards) without detection

o Access and availability: services must be accessible and available
to users

FRIENDS AND ENEMIES: ALICE, BOB, TRUDY

o Well-known in network security world

e Bob, Alice (lovers!) want to communicate “securely” (how you
could use Angela and Barrack)

« Trudy (intruder) may intercept, delete, add messages

Bob

1.".'_ I,
channel data, control -y ﬁ"
\ messages \

Alice

)

data Secure Secure data
sender receiver

WHO MIGHT BOB, ALIGE BE?

e ... well, real-life Bobs and Alices!

« Web browser/server for electronic transactions (e.g., on-line
purchases)

e on-line banking client/server
« DNS servers
e routers exchanging routing table updates

e other examples?

PRINCIPLES OF CRYPTOGRAPHY

THE LANGUAGE OF CRYPTOGRAPHY

o

.-Allces
g K encryption

& key
laintext encryption cip hertext
algorlthm

€= Bob's

K decryphon =i

J key

11:_ -El'_

decryptlon plamtext
algorlthm

e m plaintext message

o Ka(m) ciphertext, encrypted with key Ka

« m = Kg(Ka(m))

SIMPLE ENCRYPTION SCHEME

substitution cipher: substituting one thing for another

« monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqgrstuvwxyz
ciphertext: mnbvcxzasdfghjklpoiuytrewq

e.g:

Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

© Encryption key:
Mapping from set of 26 letters to set of 26 letters

BREAKING AN ENCRYPTION SCHEME

CIPHER-TEXT ONLY ATTACK

O Trudy has ciphertext she can analyze

Two approaches:

e brute force: search through all keys

o statistical analysis

KNOWN-PLAINTEXT ATTACK

O Trudy has plaintext corresponding to ciphertext

e e.g2.,iIn monoalphabetic cipher, Trudy determines pairings
for a,l.i,c,e,b,0,

CHOSEN-PLAINTEXT ATTACK

O Trudy can get ciphertext for chosen plaintext

SYMMETRIC KEY CRYPTOGRAPHY

SYMMETRIC KEY CRYPTOGRAPHY

@?»
&

4 -‘-b ﬁﬁ
aleaelileyll ciphertext dECF}’PtIOH plalntext
algorlthm algorithm

KS(m) m = K(Ks(m))

symmetric key crypto: Bob and Alice share same (symmetric) key: K

plamtext
message m

e e.g., key is knowing substitution pattern in mono alphabetic
substitution cipher

Q: how do Bob and Alice agree on key value?

A MORE SOPHISTICATED APPROACH

« n substitution ciphers, M1,M9,....Mn,

e cycling pattern:
» .8, Nn=4: M1,M3,Myg,M3,M92; M1,M3,Mgq,M3,M2; ...

e for each new plaintext symbol, use subsequent substitution
pattern in cyclic pattern

= dog: d from M1, o from M3, g from Mg

© Encryption key:

n substitution ciphers, and cyclic pattern

o key need not be just n-bit pattern

SYMMETRIC KEY CRYPTO: DES

DES: Data Encryption Standard

o US encryption standard [NIST 1993]

e 56-bit symmetric key, 64-bit plaintext input
e block cipher with cipher block chaining

e how secure is DES?

= DES Challenge: 56-bit-key-encrypted phrase decrypted (brute
force) in less than a day

» no known good analytic attack
« making DES more secure:

» 3DES: encrypt 3 times with 3 different keys

SYMMETRIC KEY CRYPTO: DES

© DES operation

e initial permutation

e 16 identical “rounds” of function application, each using
different 48 bits of key

e final permutation

SYMMETRIC KEY CRYPTO: DES

&4-bit input S5&-bit key

] permule

L1 Rl
— A8-bit K1
f[“@ . 8-bit K

Lz B2
¥ A 8-bit K2

L3 B3

1 Ei— . 48bi1 K16

| L7 | RIS

y

perm ue

Al Outpm“

AES: ADVANCED ENCRYPTION STANDARD

o Symmetric-key NIST standard, replaced DES (Nov 2001)
e Processes data in 128 bit blocks

e 128, 192, or 256 bit keys

o Iterated cipher

« Brute force decryption (try each key) taking 1 sec on DES, takes
149 trillion years for AES

AES: ADVANCED ENCRYPTION STANDARD

e« Number of rounds depend on key length
» 128 bits — 10 rounds

» 192 bits — 12 rounds

» 256 bits — 14 rounds

AES: ADVANCED ENCRYPTION STANDARD

Each round:

1. Round key mixing
2. Substitution step

3. Permutation step

AES: ADVANCED ENCRYPTION STANDARD

128-bit plaintext
1} Round keys
1Q hite
P ,(128 bits) |
transformation R e Cipher key
| (128, 192, or 256 bits)
Round 1 {I{— E
_,_l ! 7
E R | Key size
Round 2 I‘T g T 128
' . 4 12 192
) * 14 256
Round N, Relationship between
(shightly different) Kg number of rounds®)
and cipher key size
128-bit ciphertext

AES DEMO

echo "This is the very secret message" > cleartext.txt

openssl aes-256-cbc -in cleartext.txt -a

—a -> Base64 encrypts so easy to copy to email

openssl aes-256-cbc —-in cleartext.txt -out ciphertext.txt
cat ciphertext.txt #Verify content

openssl aes-256-cbc -d -1n ciphertext.txt

.11

PUBLIC KEY CRYPTOGRAPHY

PUBLIC KEY CRYPTOGRAPHY

© Symmetric key crypto

e requires sender, receiver know shared secret key

e Q: how to agree on key in first place (particularly if never
ametn)?

PUBLIC KEY CRYPTOGRAPHY

© Public key crypto

o radically different approach [Diffie-Hellman76, RSA78]

e sender, receiver do not share secret key
e public encryption key known to all

e private decryption key known only to receiver

PUBLIC KEY CRYPTOGRAPHY

K; Bob’s public

key
’. K" Bob's private
% B key

plamtext encryptlon ciphertext decryptlon __plajntext
messade, m [elelliialiy + algonthm message
Kg(m)

5 (K 5(m))

PUBLIC KEY ENCRYPTION ALGORITHMS

Need
. K*B(+) and K'g(:)
such that

« K'B(K*B(m)) =m

. given public key K¥, it should be impossible to compute private

key K'B

@ RSA: Rivest, Shamir, AdelMan algorithm

PREREQUISITE: MODULAR ARITHMETIC

PREREQUISITE: MODULAR ARITHMETIC

X mod n = remainder of x when divided by n

Facts:

e [(a mod n) + (b mod n)] mod n = (a+b) mod n
e [(a mod n) - (b mod n)] mod n = (a-b) mod n

 [(a mod n) * (b mod n)] mod n =(a*b) mod n

Thus:

(@ mod n)CI mod n = a9 mod n

EXAMPLE

x=14, n=10, d=2:

e (X mod n)d mod n = 42 mod 10 = 6
. x4=142 =196, 50 x9 mod 10 = 6

RSA

RSA: GETTING READY

e message: just a bit pattern

e bit pattern can be uniquely represented by an integer number

e thus, encrypting a message is equivalent to encrypting a number.

example:
« m=10010001. This message is uniquely represented by the
decimal number 145.

e to encrypt m, we encrypt the corresponding number, which gives
a new number (the ciphertext).

RSA: CREATING PUBLIC/PRIVATE KEY PAIR

« choose two large prime numbers p, qg. (e.g. at least, 2048 bits
each)

e compute n = pq, z = (p-1)(q-1)

e choose e (with e<n) that has no common factors with z (e, z are
“relatively prime”).

« choose d such that ed-1 is exactly divisible by z. (in other words:
edmodz=1).

« public key is (n,e).
o private key is (n,d).

RSA: ENCRYPTION, DECRYPTION

e Given (n,e) and (n,d) as computed above
e to encrypt message m (<n), compute ¢ = m€ mod n

o to decrypt received bit pattern, ¢, compute m = c9 mod n

O magic happens!

m=(m® mod n)® mod n

RSA EXAMPLE:

e Bob chooses p=5, q=7. Then n=35, z=24.

« e=5 (so e, z relatively prime).
e d=29 (so e - d - 1 exactly divisible by z).

e encrypting 4-bit messages.

RSA EXAMPLE:

© Encrypt

bit pattern

| —
1100

m
N——
12

m
N~
24832

e

mE

17

mod n

RSA EXAMPLE:

© Decrypt
C c? m=c? mod n
~— ——
17 481968572106750915091411825223071697 12

WHY DOES RSA WORK?

. must show that ¢ mod n = m where ¢ = m€ mod n

o fact: for any x and y: x¥ mod n = xly mod z) 64

where n=p-qand z = (p-1)(g-1)
thus,

d

. ¢ mod n = (m® mod n)9 mod n

RSA: ANOTHER IMPORTANT PROPERTY

The following property will be very useful later:
K g(K*g(m))
— m —
K*B (K'B(m))
Using public or private key first: Result is the same
Why?

Follows directly from modular arithmetic:

(m€ mod n)9 mod n = m€9 mod n

WHY IS RSA SECURE?

e suppose you know Bob’s public key (n,e).
» How hard is it to determine d?

o essentially need to find factors of n without knowing the two
factors p and g

¢ Factoring a big number is hard - no known efficient algorithm

RSA IN PRACTICE: SESSION KEYS

e exponentiation in RSA is computationally intensive
e« DES is at least 100 times faster than RSA

e use public key cryto to establish secure connection, then establish
second key - symmetric session key - for encrypting data

session key, Kg

e Bob and Alice use RSA to exchange a symmetric key Kg

« once both have Kg, they use symmetric key cryptography

MESSAGE INTEGRITY, AUTHENTICATION

MESSAGE INTEGRITY, AUTHENTICATION

©® When Bob receives a message (plain or ciphertext) and he
believe it was sent by Alice

To authenticate this message, Bob must verify:

« The message indeed originated from Alice

e The message was not tampered with on its way to Bob

AUTHENTICATION

Goal: Bob wants Alice to “prove” her identity to him

PROTOCOL 1.0

© Protocol ap1.0: Alice says “l am Alice”

Failure scenario??

PROTOCOL 1.0

o= el

& in a network,

' Bob can not “see” Alice,
so Trudy simply declares
“I am Alice” herself to be Alice

PROTOCOL 2.0

© Protocol ap2.0: Alice says “l am Alice” in an IP packet
containing her source IP address

Alice’s
IP address

“I am Alice”

oo el
o— AT e

L

A)

Failure scenario??

PROTOCOL 2.0

o= el
— 2 1= -

[A £F

i Trudy can create
/ o a packet “spoofing”

Alice’s address

g/ Alice’s

/ IP address | | @m Alice”

PROTOCOL 3.0

© Protocol ap3.0: Alice says “l am Alice” and sends her secret
password to “prove” it.

Alice’s Alice’s G . n .
IP addr | password I'm Alice ;._-; "
T

l_| o

9 Failure scenario??

Alice’s
— OK
IP addr

PROTOCOL 3.0

Alice’s
IP addr

Alice’s
password

“I'm Alice”

playback attack: Trudy
records Alice’'s packet
and later
plays it back to Bob

IP addr

Alice’s
password

“I'm Alice”

PROTOCOL 3.1

©® Protocol ap3.1: Alice says “l am Alice” and sends her
encrypted secret password to “prove” it.

Alice’s EncwptEd ::Imm Aliceu >

IP addr | password ~ ;a_-;'ﬂ-.__
[e §]
Aice’s | o 54 Failure scenario??
IP addr

PROTOCOL 3.1

Alice’s
IP addr

encrypted
password

“I'm Alice”

IP addr

encrypted

password

“I'm Alice”

record
and
playback
still works!

.11

PROTOCOL 4.0

Goal: avoid playback attack

Nonce number R used only once-in-a-lifetime

©® Protocol ap4.0: To prove Alice “live”, Bob sends Alice nonce,
R. Alice must return R, encrypted with shared secret key

- “I am Alice” e
.-_-_ \’[:_Lrl-ﬁ‘?
KA-B(R) Alice IS live, and
\ only Alice knows
key to encrypt
: nonce, so it must
‘? ’
Failures, drawbacks” bo Alicel

PROTOCOL 4.0

ap4.0 requires shared symmetric key

o Can we authenticate using public key techniques?

PROTOCOL 5.0

© Protocol ap5.0: Use nonce, public key cryptography

“I am Alice” e
'-"‘ -F-. \[_:‘E.rh_{? Bob CDmpUteS
e _.___:._:_'. — - ..a + -
b e R @ K (K (R)=R
Kx (R) |
\ and knows only Alice
“send me your public key” = could have the private
- K + key, that encrypted R
N SUCh that
5 -
K A(Ky(R) =R

PROTOCOL 9.0: SECURITY HOLE

© Man (or woman) in the middle attack:

Trudy poses as Alice (to Bob) and as Bob (to Alice)

| am Alice . ’ | am Alice
R
K_R),
M W
+
KA(R) > K T
Send me your-public key
K, ,
A
Trudy gets < KT(m)
-+
+ m = KT(KT (m))
L Kp(m) sends m to Alice
m=K (K (m)) encrypted with
A A Alice’s public key

AP3.0: SECURITY HOLE

©® Man (or woman) in the middle attack: Trudy poses as Alice (to
Bob) and as Bob (to Alice)

£/ -
S -
»- < > L — .:‘_"-'.:-’ “. -
5]

Difficult to detect:

e Bob receives everything that Alice sends, and vice versa. (e.g., so
Bob, Alice can meet one week later and recall conversation!)

o problem is that Trudy receives all messages as well!

DIGITAL SIGNATURES

DIGITAL SIGNATURES

Cryptographic technique analogous to hand-written signatures:

« Sender (Bob) digitally sighs document, establishing he is document
owner/creator.

 Verifiable, nonforgeable: recipient (Alice) can prove to someone
that Bob, and no one else (including Alice), must have signed
document

DIGITAL SIGNATURES

Simple digital sighature for message m:

e Bob signs m by encrypting with his private key Kg~, creating

“signed” message, KB~(m)

Bob’s message, m

Dear Alice

Oh, how | have missed
you. | think of you all the
time! ...(blah blah blah)

Bob

K- Bob's private

m,K-B(m)

J B key

Public key

encryption
algorithm

Bob's message,
m, signed
(encrypted) with
his private key

DIGITAL SIGNATURES

« suppose Alice receives msg m, with signature: m, Kg“(m)

o Alice verifies m signed by Bob by applying Bob’s public key KB'"
to Kg“(m) then checks KgT(Kg™(m)) = m.

. If KgT(KB™(m)) = m, whoever signed m must have used Bob’s

orivate key.

DIGITAL SIGNATURES

Alice thus verifies that:

e Bob signed m
e NO one else sighed m

e Bob sighed m and not m’
Non-repudiation:

Alice can take m, and signature Kg“(m) to court and prove that Bob
signed m

MESSAGE DIGESTS

MESSAGE DIGESTS

Computationally expensive to public-key-encrypt long messages
goal: fixed-length, easy- to-compute digital “fingerprint”

¢ Apply hash function H to m, get fixed size message digest,
H(m).

large

m J

H(m)

CRYPTOGRAPHIC HASH FUNCTION

Hash function properties:

e many-to-1
« produces fixed-size msg digest (fingerprint)

« computationally infeasible to find messages x and y such that H(x)
= H(y)

CRYPTOGRAPHIC HASH FUNCTION

Input Digest
cryptographic
DFCD 3454 BBEA 788A 7hlh
Fi ’ bl > 696c 24D9 7009 CA99 2D17
function
The red fox cryptographic
. 0086 46BB FB7D CBE2 823C
Jumps over ’ T > ACCT 6CDL 90B1 EEGE 3ABC
the blue dog function
The red fox cryptographic
. 8FD8 75b8 78b1 4F32 D1Cé
JUmps ouer ’ bl > 76B1 79A9 ODA4 AEFE 4819
the blue dog function
The red fox cryptographic
: FCD3 7FDB SAF2 C6FF 915F
JUMPS OV ’ T > D401 COA9 7D9A 46AF FBAS
the blue dog function
The red fox cryptographic
. 8ACA D682 DbH88 4C75H 4BF4
JUmps oer ’ bl > 1799 7D88 BCFS 92B9 6A6C
the blue dog function

INTERNET CHECKSUM: POOR CRYPTO HASH

Internet checksum has some properties of hash function:

e produces fixed length digest (16-bit sum) of message

e iS many-to-one

o But given message with given hash value, it is easy to find another
message with same hash value:

INTERNET CHECKSUM: POOR CRYPTO HASH

Message ASCII format Message ASCII format
I0U1 49 4F 55 31 I0U29 49 4F 55 39
©0 .9 30 30 2E 39 ©0 .1 30 30 2E 31
9B OB 39 42 D2 42 9B OB 39 42 D2 42

B2 C1 D2 AC B2 C1 D2 AC

Different messages, but identical checksums

CRC is also a poor crypto hash function

HASH FUNCTION ALGORITHMS

MD5 hash function widely used (RFC 1321)

o computes 128-bit message digest in 4-step process.

e arbitrary 128-bit string X, appears difficult to construct msg m
whose MD5 hash is equal to x

e Itis no longer secure!

» Rainbow tables available

HASH FUNCTION ALGORITHMS

SHA-1 is also used

o US standard [NIST, FIPS PUB 180-1]
e 160-bit message digest

e Shown that you can find collisions in 'only' 221 attempts. See
http:/eprint.iacr.org/2008/469.pdf originally expected 280

http://eprint.iacr.org/2008/469.pdf

HASH FUNCTION ALGORITHMS

Keccak wins SHA3 competition in 2012
e 5 year competition by NIST for the next cryptographic hash
function standard

o Keccak announced the winner in October 2012:
http://csrc.nist.gov/groups/ST/hash/sha-3/winner_sha-3.html

http://csrc.nist.gov/groups/ST/hash/sha-3/winner_sha-3.html

DIGITAL SIGNATURE

Digital signhature = sighed message digest

DIGITAL SIGNATURE

Bob sends digitally
sighed message:

large
message:
S . gl

Bob’'s @#= digital
Private memmm—p signatu re
key KE-; (encrypt)

encrypted
msg digest

Kg(H(m))

DIGITAL SIGNATURE

Alice verifies signature,
integrity of digitally
g-nedrﬂessage:

—— eNcrypted
B msg digest
Kg(H(m))
large
message ,
m BOEI‘.‘B e= digital
puke'c mdl signature
y KB (decrypt)
H(m) H(m)
equal

RECALL: 2.0 SECURITY HOLE

©® man (or woman) in the middle attack:

Trudy poses as Alice (to Bob) and as Bob (to Alice)

P
| am Alice R s
R —
KT{R) . '-."-’I;-l
W
+
K—»
=
A—
Trudy gets < KT(m)
-+
+ m = K_(K_(m))
o, K,&l(m) sends m to Alice
m = KA(KA (m)) encrypted with

Alice’s public key

PUBLIC-KEY CERTIFICATION

CERTIFICATION AUTHORITIES

o certification authority (CA): binds public key to particular entity,

E.

« E (person, router) registers its public key with CA.

» E provides “proof of identity” to CA.

» CA creates certificate binding E to its pub

» certificate containing E’s public key digital
says “this is E’s public key”

ic key.
y sighned by CA - CA

CERTIFICATION AUTHORITIES

when Alice wants Bob'’s public key:

o gets Bob's certificate (Bob or elsewhere).

o apply CA’s public key to Bob’s certificate, get Bob’s public key

¥ digital @s=>Bob’s
KB g Signature —p public
+
k
KB ey
ublic
E o
g

JAVA TRUSTED CERTS

keytool -keystore "$JAVA HOME/jre/lib/security/cacerts" -storepass changeit -list

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 104 entries

digicertassuredidrootca, Apr 16, 2008, trustedCertEntry,

Certificate fingerprint (SHA1l): 05:63:B8:63:0D:62:D7:5A:BB:C8:AB:1E:4B:DF:B5:A8:9¢
comodorsaca, May 11, 2015, trustedCertEntry,

Certificate fingerprint (SHAl): AF:E5:D2:44:A8:D1:19:42:30:FF:47:9F:E2:F8:97:BB:CI
thawtepremiumserverca, May 20, 2015, trustedCertEntry,

Certificate fingerprint (SHAl): EO0O:AB:05:94:20:72:54:93:05:60:62:02:36:70:F7:CD:2t

SECURING E-MAIL

SECURE E-MAIL

Alice wants to send confidential e-mail, m, to Bob.

KS :I

Ks()

SECURE E-MAIL

Alice:

generates random symmetric private key, Kg
encrypts message with Kg (for efficiency)
also encrypts Kg with Bob’s public key
sends both Kg(m) and Kg(Ks) to Bob

SECURE E-MAIL

Bob:

e uses his private key to decrypt and recover Kg

o uses Kg to decrypt Kg(m) to recover m

SECURE E-MAIL (CONTINUED)

Alice wants to provide sender authentication and message integrity

Ki ': KI':

o Hm

ks

compare =i
5

T

H(m)

Alice digitally sighs message

sends both message (in the clear) and digital signature

SECURE E-MAIL (CONTINUED)

Alice wants to provide secrecy, sender authentication, message
Integrity.

Alice uses three keys:

1. her private key
2. Bob’s public key

3. newly created symmetric key

SECURE E-MAIL (CONTINUED)

PGP

e Pretty Good Privacy
e Written by Phil Zimmermann in 1991

e Email encryption scheme

PGP

Depending on the version:

e Uses MD5 or SHA for message digest
o CAST, tripple-DES or IDEA for symmetric key enc.
e RSA for public key enc.

PGP

Provides mechanism for public key verification

e signing others' keys you trust
e Key signing parties

o Users physically gather, exchange public keys and certify others
with their private key

PGP HISTORY

e PGP encryption found its way outside the United States

e February 1993 Zimmermann became the formal target of a
criminal investigation by US Gowv.

e "Munitions export without a license"

» Cryptosystems using keys larger than 40 bits were then
considered munitions

PGP HISTORY

o Zimmermann published entire source code in a book - available
world wide

e Anyone could OCR/type in and recreate

e The claimed principle was simple: export of munitions—guns,
bombs, planes, and software—was (and remains) restricted; but
the export of books is protected by the First Amendment.

13.12

QUESTIONS

