
< - q __-.->

(a)

+-k

o)

P

P .

(c)

Figure 32.10 The prefix function n. (a) The pattem P = ababaca is aligned with a text T so

that the first 4 = 5 characters match. Matching characters, shown shaded, are connected by vertieal

lines. (b) Using only our knowledge of the 5 matched characters, we can deduce that a sffi of s * 1

is invalid, but that a shift of s/ = s t 2 is consistent with everything we know about the text and

therefore is potentially valid. (c) The useful information for such deductions can be precomputed

by comparing the pattem with itself. Here, we see that the longest prefix of P that is also a proper

rum* oi f5 is f3. ttris information is precomputed and represented in the arliay n, so that n[5] = 3'

Given thaiq characters have matched successfully at shift ,t, the next potentially valid shift is at

s / : s t @ - r l q l) .

c a

a b c a z[8] = 6

'r{5)=4

i l 4)=2

d 2 l = 0

(a)

P8

P6

P4

P2

Po

a b a b c a

a b a b a b c a

i "
O a b a b a b c a

o)

Figure 32.11 An illustration of Lemma 32.5 fot the pattem P : ababababca and 4 = g.
(a) The z function for the given pattern. Since z[8] = 6, 116l = 4, r[4j = 2, arrd r[2) : g,
by iterating z we obtain z*[8] = {6,4,2,0}. (b) we slide the template containing the pattem p
to the right and note when some prefix Pp of P matches up with some proper suffix of pg; this
happens for ft : 6,4,2, and 0. In the figure, the first row gives P, and the dotted vertical line is
drawn just after Pg. Successive rcws show all the shifts of P that cause some preflx pp of p to
match some suffix of Pg. Successfril-y matched characters are shown shaded. Vertical lines connect
aligred matching characters. Thus, {,t i k < q and Pp 1 Pql = 16,4,2,01. The lemma claims that
n*[q] : {k : k < q and Pp = Pq] for all q.

I I .,
J

A) 6 8 9 10
Ptil b h a b b a

lilil 0 0 I 2 3 4 5 6 0

926 Chapter 32 String Matching

The Knuth-Morris-Pratt matching algorithm is given in pseudocode below as the
procedure KMP-MATCHER" It is mostly modeled after FrNrrE-Aurovrarox-
MATcHER, as we shall see" KMp-MarcHeR calls the auxiliary procedure
CorrtpurB-PREFIX-FuNcrIoN to eompute n.

KMP-MarcHER(f, p)

I n + lengthfT]
2 m <- lengthlPl
3 tr +CoMpure-pREFrx-FuNcrroN(p)
4 q < - o tr Number of characters matched.
5 for i+ l ton Dscanthetext f romlef t tor ight .
6 d o w h i t e 4 > 0 a n d p t q + l + f ? l . / - .
7 d o q + n l q l
8 i t P[q + 1] : Tl j l
9 t h e n q < - q * l

> Next character does not matoh"

tr Next chamcter matches.
> Is all of P matched?10

1 1
t2

i f q - m
then print "Pattem occurs with shift,, i - rn

q + Tlql tr took for the next match.

Coupure-PREFrx-FuNcrroN (p)
L m <- lengthlPl
2 r f l)+O
3 k + - 0
4 f o r q + 2 t o m
5 do while & > 0 and plk + Il * ptql
b d o k < - f l k l
7 i f "Dli + l l : P[q]
8 then ft +"/c * 1
9 ntq l+k

10 return n

we begin with an analysis of the running times of these procedures. proving
procedures correct will be more complicated.

Running-time analysis

The running time of pourure-pREFrx-FuNcTroN is @(rn), using rhe
method of amortized analysis (see section 17.3)" we associate a
with the current state ft of the algorithm" This potential has an initial ,
by line 3. Line 6 decreases & wheneve_r it is executed, since fi[k] <
n[k] > 0 for atl ft, however, ft can never become negative. The only
that affects fr is line 8, which increases ft by at most one during each

