Hamiltonian paths in tournaments - A generalization of sorting DM19 notes fall 2006

Jørgen Bang-Jensen
Imada, SDU

30. august 2006

1 Introduction and motivation

Tournaments which we will define mathematically in the next section are, besides being an interesting mathematical object, also interesting from a practical point of view. We shall show that the sorting problem is a special case of that of finding a hamiltonian path in a tournament. But let us start with a more amusing application of tournaments: Consider a soccer tournament in which every pair of distinct teams play each other exactly once and where ties are not allowed (that is in case of a tie after 90 minutes the game continues until one team has scored a goal, or, eventually the game is decided on penalties). The outcome of such a soccer tournament can be modeled as a mathematical tournament T by letting each team correspond to a vertex of T and letting T contain the arc $i \rightarrow j$ precisely when team i has beaten team j. The rule that there can be no ties ensures that T will be a mathematical tournament.

Since, as we shall prove below, every tournament has a hamiltonian path, it follows that one can always order the teams $1,2, \ldots, n$ in such a way that team i has beaten team $i+1$ for $i=1, \ldots, n-1$. Another interesting consequence is that there will always exist a team i such that for any other team j, either i has beaten j or i has beaten a team k which in turn has beaten j. You will be asked to prove this fact as one of the exercises.

The main purpose of this note is to show how various algorithms for sorting numbers can be converted into algorithms for finding hamiltonian paths in (mathematical) tournaments.

2 Some mathematics

A tournament is a directed graph $T=(V, A)$ such that for every pair of distinct vertices $x, y \in V$, precisely one of the $\operatorname{arcs} x \rightarrow y, y \rightarrow x$ belongs to A.

	$\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$				
1	0	1	1	0	0
2	0	0	0	0	0
3	0	1	0	0	1
4	1	1	1	0	0
5	1	1	0	1	0

Figur 1: A tournament T on 5 vertices and the corresponding adjacency matrix $M(T)$. The numbering of the vertices of T corresponds to the numbering of the rows ands columns of $M(T)$.

Note that if $T=(V, A)$ is a tournament, then every subset $V^{\prime} \subseteq V$ induces a subtournament of T and for every pair of distinct vertices $v, v^{\prime} \in V^{\prime}$, the arc $v \rightarrow v^{\prime}$ is an arc in T^{\prime} if and only if $v \rightarrow v^{\prime}$ is an arc of T. We also call T^{\prime} the subtournament of T induced by V^{\prime}.

Given a tournament T on n vertices v_{1}, \ldots, v_{n} we can define an $n \times n$ matrix $M(T)=\left\{m_{i j}\right\}_{i, j=1, \ldots, n}$, whose elements are all 0 or 1 and where $m_{i j}=1 \Longleftrightarrow$ $m_{j i}=0$ for $i \neq j$, and $m_{i i}=0, i=1,2, \ldots, n$. The matrix $M(T)$ is called the adjacency matrix of T and is defined by $m_{i, j}=1 \Longleftrightarrow v_{i} \rightarrow v_{j}$ is an arc of T.

Figure 1 shows a tournament on 5 vertices and the corresponding adjacency matrix.

A path in a digraph $D=(V, A)$ is a collection of vertices and $\operatorname{arcs} P=$ $x_{1}, x_{1} \rightarrow x_{2}, x_{2}, x_{2} \rightarrow x_{3}, \ldots, x_{k-1} \rightarrow x_{k}, x_{k}$, such that the vertices $x_{1}, x_{2}, \ldots, x_{k}$ are distinct. We say that P starts in x_{1} and ends in x_{k} and call it an $\left(x_{1}, x_{k}\right)$ path. Similarly, a cycle is a collection of vertices and arcs $x_{1}, x_{1} \rightarrow x_{2}, x_{2}, x_{2} \rightarrow$ $x_{3}, \ldots, x_{k-1} \rightarrow x_{k}, x_{k}, x_{k} \rightarrow x_{1}$, such that the vertices $x_{1}, x_{2}, \ldots, x_{k}$ are distinct. We will often just denote a path and a cycle as above by $x_{1} \rightarrow x_{2} \rightarrow \ldots \rightarrow x_{k}$ respectively, $x_{1} \rightarrow x_{2} \rightarrow \ldots \rightarrow x_{k} \rightarrow x_{1}$. The length of a path or a cycle is the number of arcs in it. A hamiltonian path in a digraph D is a path containing all vertices of D. For example, the path $3 \rightarrow 5 \rightarrow 4 \rightarrow 1 \rightarrow 2$ is a hamiltonian path in the tournament T in Figure 1.

Observe that if $x_{1}, x_{2} \ldots, x_{n}$ are distinct real numbers, then we can define a tournament $T T_{n}$ by letting each x_{i} correspond to a vertex v_{i} and letting $v_{i} \rightarrow v_{j}$ be an arc of $T T_{n}$ precisely when $x_{i}<x_{j}$. Then it is easy to see that $T T_{n}$ does not contain any directed cycle and that $T T_{n}$ will be the same for any choice of n distinct real numbers with the same relative order as $x_{1}, x_{2} \ldots, x_{n}$. We call $T T_{n}$ the transitive tournament on n vertices. The name transitive comes from the fact that for all v_{i}, v_{j}, v_{k} such that $v_{i} \rightarrow v_{j}$ and $v_{j} \rightarrow v_{k}$ are arcs of $T T_{n}$, the arc $v_{i} \rightarrow v_{k}$ also belongs to $T T_{n}$. Furthermore, if we assume that $x_{1}<x_{2}<\ldots<x_{n}$ then $v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n}$ is the unique hamiltonian path of T. As we shall show below, every tournament has a hamiltonian path. Thus it follows that the sorting
problem is a special case of that of finding a hamiltonian path in a tournament. By this we mean the following: any algorithm for finding a hamiltonian path in a tournament can be used to sort a set of n numbers, since for tournaments defined from sets of distinct numbers as above there is precisely one hamiltonian path, the one corresponding to sorting the numbers in ascending order.

In Algorithm 2 below we shall make use of the following lemma.
Lemma 1 Let $x_{1} \rightarrow x_{2} \rightarrow \ldots \rightarrow x_{r}, r \geq 2$, be a path in a tournament T and let x be a vertex not on this path. If both $x_{1} \rightarrow x$ and $x \rightarrow x_{r}$ are arcs of T, then there exists an index $1 \leq i \leq r-1$, such that $x_{i} \rightarrow x$ and $x \rightarrow x_{i+1}$ are both arcs of T. Hence $x_{1} \rightarrow \ldots \rightarrow x_{i} \rightarrow x \rightarrow x_{i+1} \rightarrow \ldots \rightarrow x_{r}$ is a path in T.

Proof: Let i be the largest index such that $x_{i} \rightarrow x$ is an arc of T. Since $x \rightarrow x_{r}$ (implying that $x_{r} \rightarrow x$ is not an arc of T !) it follows that $i \leq r-1$ and by the maximality of i we must have $x \rightarrow x_{i+1}$.

3 Algorithms for finding a hamiltonian path in a tournament

Below we shall sketch two algorithms for finding a hamiltonian path in a tournament. These are based on two of the most fundamental principles that were covered in the course DM02, namely divide and conquer and incremental algorithms.

Algorithm 1:

This is an adaption of the well-know Merge-sort algorithm to tournaments:

1. Partition the vertex set of T into two disjoint sets V_{1} and V_{2} of equal or (if the number of vertices is odd) almost equal size. Denote by T_{i} the subtournament of T induced by V_{i} for $i=1,2$.
2. Find recursively a hamiltonian path P_{i} in $T_{i}, i=1,2$.
3. Merge the paths P_{1} and P_{2} into one path as follows: Let $P_{1}=x_{1} \rightarrow x_{2} \rightarrow$ $\ldots \rightarrow x_{k}$ and $P_{2}=x_{k+1} \rightarrow x_{k+2} \rightarrow \ldots \rightarrow x_{k+l}, k=l$ or $k=l+1$, be the two paths that we wish to merge into a hamiltonian path of T. Since T is a tournament, either $x_{1} \rightarrow x_{k+1}$ or conversely. Assume without loss of generality below that $x_{1} \rightarrow x_{k+1}$. Find an index i such that $x_{i} \rightarrow x_{k+1}$ and either $i=k$ or $x_{k+1} \rightarrow x_{i+1}$. If $i=k$ we are done, since then $x_{k} \rightarrow x_{k+1}$ and it is easy to construct a hamiltonian path of T. Suppose that $i<k$. Repeat the above process with the two paths $x_{i+1} \rightarrow \ldots \rightarrow x_{k}$ and $x_{k+1} \rightarrow \ldots \rightarrow x_{k+l}$. The merging is completed when one of the two remaining paths becomes empty. Figure 2 shows an example of the merging process.

Figur 2: An example of a merging of two paths. The dotted line indicates the resulting hamiltonian path.

Algorithm 2:

This is the equivalent of insertion sort for tournaments.

1. Let v_{1}, \ldots, v_{n} be an arbitrary ordering of the vertices of the tournament T.
2. Consider the vertices v_{1} and v_{2}. The unique arc between x_{1} and x_{2} forms a hamiltonian path in the subtournament induced by v_{1} and v_{2}.
3. In the k^{\prime} th step, $3 \leq k \leq n$, we proceed as follows: Let $x_{1} \rightarrow \ldots \rightarrow x_{k-1}$ be the current hamiltonian path which the algorithm has found in the tournament induced by the vertices v_{1}, \ldots, v_{k-1}. Consider the arcs between the next vertex v_{k} and this path.
4. If $v_{k} \rightarrow x_{1}$, then $v_{k} \rightarrow x_{1} \rightarrow \ldots \rightarrow x_{k-1}$ is a hamiltonian path in the subtournament induced by v_{1}, \ldots, v_{k}. Go to step 3 and consider the $(k+1)$ 'st vertex.
5. Otherwise, if $x_{k-1} \rightarrow v_{k}$ is an arc of T, then $x_{1} \rightarrow \ldots \rightarrow x_{k-1} \rightarrow v_{k}$ is a hamiltonian path in the subtournament induced by v_{1}, \ldots, v_{k}. Go to step 3 and consider the $(k+1)$ 'st vertex.
6. (now we know that both $x_{1} \rightarrow v_{k}$ and $v_{k} \rightarrow x_{k-1}$ are arcs of T, implying, by Lemma 1, that v_{k} can be inserted somewhere inside that path $\left.x_{1} \rightarrow \ldots \rightarrow x_{k-1}\right)$. Find $x_{i}, 1 \leq i \leq k-2$, such that $x_{i} \rightarrow v_{k}$ and $v_{k} \rightarrow x_{i+1}$ are both arcs. Let $x_{1} \rightarrow \ldots \rightarrow x_{i} \rightarrow v_{k} \rightarrow x_{i+1} \rightarrow \ldots \rightarrow x_{k-1}$ be the new path and go to step 3 with the $(k+1)$ 'st vertex.

It is easy to see that the approach above can be converted into a proof by induction on the number of vertices of the following result.

Theorem 1 Every tournament has a hamiltonian path.

4 Exercises

1. Prove that every tournament $T=(V, A)$ has a vertex v such that v can reach every other vertex by a path of length at most 2 (i.e., for every $u \in V-v$, either $v \rightarrow u$ is an arc of T or there exists a vertex $z \in V-\{u, v\}$ such that $v \rightarrow z$ and $z \rightarrow u$ are both arcs of T. Hint: consider a vertex with the maximum number of arcs starting in it.
2. Let $T=(V, A)$ be a tournament and let P, Q be two paths, both of which start in x and end in y and which have no other common vertices (that is, they meet only at the ends).
(a) Prove that T has a path R which starts in x, ends in y and which contains precisely those vertices which belong to one of the paths P, Q (that is $V(R)=$ $V(P) \cup V(Q))$. Hint: prove that the paths can be merged as in Algorithm 1.
(b) Describe a linear algorithm which, given two paths P, Q as above in a tournament, finds a path R as above. Hint: use the fact that one can construct R starting from the first vertex which is x and then proceeding forward along the two paths (as when one zips a fly), see Figure 2).
3. Describe how to implement Algorithm 1 and 2 such that the running times are $O(n \log n)$ and $O\left(n^{2}\right)$, respectively, when we measure the complexity as the number of times we need to look up the direction of an arc in the adjacency matrix.
4. A digraph $D=(V, A)$ is strongly connected if it contains and (x, y)-path for every choice of vertices $x, y \in V$. Prove that every strongly connected tournament has a hamiltonian cycle, that is, a cycle which contains all vertices of T. Hint: Start with a cycle C and conclude that if C is not a hamiltonian cycle, then, since T is strongly connected, one can extend the cycle C by adding one or more vertices. Here you can use Lemma 1.
5. Convert you proof above to an algorithm for finding a hamiltonian cycle in a tournament and give the complexity of your algorithm.
