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1 Introduction and motivation

Tournaments which we will define mathematically in the next section are, besi-
des being an interesting mathematical object, also interesting from a practical
point of view. We shall show that the sorting problem is a special case of that
of finding a hamiltonian path in a tournament. But let us start with a more
amusing application of tournaments: Consider a soccer tournament in which
every pair of distinct teams play each other exactly once and where ties are
not allowed (that is in case of a tie after 90 minutes the game continues until
one team has scored a goal, or, eventually the game is decided on penalties).
The outcome of such a soccer tournament can be modeled as a mathematical
tournament T by letting each team correspond to a vertex of T and letting T

contain the arc i→j precisely when team i has beaten team j. The rule that
there can be no ties ensures that T will be a mathematical tournament.

Since, as we shall prove below, every tournament has a hamiltonian path, it
follows that one can always order the teams 1, 2, . . . , n in such a way that team
i has beaten team i + 1 for i = 1, . . . , n − 1. Another interesting consequence
is that there will always exist a team i such that for any other team j, either i

has beaten j or i has beaten a team k which in turn has beaten j. You will be
asked to prove this fact as one of the exercises.

The main purpose of this note is to show how various algorithms for sor-
ting numbers can be converted into algorithms for finding hamiltonian paths in
(mathematical) tournaments.

2 Some mathematics

A tournament is a directed graph T = (V, A) such that for every pair of distinct
vertices x, y ∈ V , precisely one of the arcs x→y, y→x belongs to A.
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Figur 1: A tournament T on 5 vertices and the corresponding adjacency matrix
M(T ). The numbering of the vertices of T corresponds to the numbering of the
rows ands columns of M(T ).

Note that if T = (V, A) is a tournament, then every subset V ′ ⊆ V induces
a subtournament of T and for every pair of distinct vertices v, v′ ∈ V ′, the arc
v→v′ is an arc in T ′ if and only if v→v′ is an arc of T . We also call T ′ the
subtournament of T induced by V ′.

Given a tournament T on n vertices v1, . . . , vn we can define an n×n matrix
M(T ) = {mij}i,j=1,...,n, whose elements are all 0 or 1 and where mij = 1 ⇐⇒
mji = 0 for i 6= j, and mii = 0, i = 1, 2, . . . , n. The matrix M(T ) is called the
adjacency matrix of T and is defined by mi,j = 1 ⇐⇒ vi→vj is an arc of T .

Figure 1 shows a tournament on 5 vertices and the corresponding adjacency
matrix.

A path in a digraph D = (V, A) is a collection of vertices and arcs P =
x1, x1 → x2, x2, x2 → x3, . . . , xk−1 → xk, xk, such that the vertices x1, x2, . . . , xk

are distinct. We say that P starts in x1 and ends in xk and call it an (x1, xk)-
path. Similarly, a cycle is a collection of vertices and arcs x1, x1 → x2, x2, x2 →
x3, . . . , xk−1 → xk , xk, xk→x1, such that the vertices x1, x2, . . . , xk are distinct.
We will often just denote a path and a cycle as above by x1 → x2 → . . . → xk

respectively, x1 → x2 → . . . → xk→x1. The length of a path or a cycle is the
number of arcs in it. A hamiltonian path in a digraph D is a path containing
all vertices of D. For example, the path 3→5→4→1→2 is a hamiltonian path
in the tournament T in Figure 1.

Observe that if x1, x2 . . . , xn are distinct real numbers, then we can define a
tournament TTn by letting each xi correspond to a vertex vi and letting vi→vj

be an arc of TTn precisely when xi < xj . Then it is easy to see that TTn does
not contain any directed cycle and that TTn will be the same for any choice of n

distinct real numbers with the same relative order as x1, x2 . . . , xn. We call TTn

the transitive tournament on n vertices. The name transitive comes from the
fact that for all vi, vj , vk such that vi→vj and vj→vk are arcs of TTn, the arc
vi→vk also belongs to TTn. Furthermore, if we assume that x1 < x2 < . . . < xn

then v1→v2→ . . .→vn is the unique hamiltonian path of T . As we shall show
below, every tournament has a hamiltonian path. Thus it follows that the sorting
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problem is a special case of that of finding a hamiltonian path in a tournament.
By this we mean the following: any algorithm for finding a hamiltonian path
in a tournament can be used to sort a set of n numbers, since for tournaments
defined from sets of distinct numbers as above there is precisely one hamiltonian
path, the one corresponding to sorting the numbers in ascending order.

In Algorithm 2 below we shall make use of the following lemma.

Lemma 1 Let x1→x2→ . . .→xr, r ≥ 2, be a path in a tournament T and let x

be a vertex not on this path. If both x1→x and x→xr are arcs of T , then there

exists an index 1 ≤ i ≤ r − 1, such that xi→x and x→xi+1 are both arcs of T .

Hence x1→ . . .→xi→x→xi+1→ . . .→xr is a path in T .

Proof: Let i be the largest index such that xi→x is an arc of T . Since x→xr

(implying that xr→x is not an arc of T !) it follows that i ≤ r − 1 and by the
maximality of i we must have x→xi+1. q.e.d.

3 Algorithms for finding a hamiltonian path in

a tournament

Below we shall sketch two algorithms for finding a hamiltonian path in a tour-
nament. These are based on two of the most fundamental principles that were
covered in the course DM02, namely divide and conquer and incremental algo-

rithms.

Algorithm 1:

This is an adaption of the well-know Merge-sort algorithm to tournaments:

1. Partition the vertex set of T into two disjoint sets V1 and V2 of equal or
(if the number of vertices is odd) almost equal size . Denote by Ti the
subtournament of T induced by Vi for i = 1, 2.

2. Find recursively a hamiltonian path Pi in Ti, i = 1, 2.

3. Merge the paths P1 and P2 into one path as follows: Let P1 = x1 → x2 →
. . . → xk and P2 = xk+1 → xk+2 → . . . → xk+l, k = l or k = l + 1, be
the two paths that we wish to merge into a hamiltonian path of T . Since
T is a tournament, either x1 → xk+1 or conversely. Assume without loss
of generality below that x1 → xk+1. Find an index i such that xi → xk+1

and either i = k or xk+1 → xi+1. If i = k we are done, since then
xk → xk+1 and it is easy to construct a hamiltonian path of T . Suppose
that i < k. Repeat the above process with the two paths xi+1 → . . . → xk

and xk+1 → . . . → xk+l. The merging is completed when one of the two
remaining paths becomes empty. Figure 2 shows an example of the merging
process.
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Figur 2: An example of a merging of two paths. The dotted line indicates the
resulting hamiltonian path.

Algorithm 2:

This is the equivalent of insertion sort for tournaments.

1. Let v1, . . . , vn be an arbitrary ordering of the vertices of the tournament
T .

2. Consider the vertices v1 and v2. The unique arc between x1 and x2 forms
a hamiltonian path in the subtournament induced by v1 and v2.

3. In the k′th step, 3 ≤ k ≤ n, we proceed as follows: Let x1→ . . .→xk−1 be
the current hamiltonian path which the algorithm has found in the tour-
nament induced by the vertices v1, . . . , vk−1. Consider the arcs between
the next vertex vk and this path.

4. If vk→x1, then vk→x1→ . . .→xk−1 is a hamiltonian path in the subtour-
nament induced by v1, . . . , vk. Go to step 3 and consider the (k + 1)’st
vertex.

5. Otherwise, if xk−1→vk is an arc of T , then x1→ . . .→xk−1→vk is a ha-
miltonian path in the subtournament induced by v1, . . . , vk. Go to step 3
and consider the (k + 1)’st vertex.

6. (now we know that both x1→vk and vk→xk−1 are arcs of T , implying, by
Lemma 1, that vk can be inserted somewhere inside that path x1→ . . .→xk−1).
Find xi, 1 ≤ i ≤ k − 2, such that xi→vk and vk→xi+1 are both arcs.
Let x1→ . . .→xi→vk→xi+1→ . . . →xk−1 be the new path and go to step
3 with the (k + 1)’st vertex.

It is easy to see that the approach above can be converted into a proof by
induction on the number of vertices of the following result.

Theorem 1 Every tournament has a hamiltonian path.
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4 Exercises

1. Prove that every tournament T = (V, A) has a vertex v such that v can reach every
other vertex by a path of length at most 2 (i.e., for every u ∈ V − v, either v→u is an
arc of T or there exists a vertex z ∈ V − {u, v} such that v→z and z→u are both arcs
of T . Hint: consider a vertex with the maximum number of arcs starting in it.

2. Let T = (V, A) be a tournament and let P,Q be two paths, both of which start in x

and end in y and which have no other common vertices (that is, they meet only at the
ends).

(a) Prove that T has a path R which starts in x, ends in y and which contains
precisely those vertices which belong to one of the paths P,Q (that is V (R) =
V (P ) ∪ V (Q)). Hint: prove that the paths can be merged as in Algorithm 1.

(b) Describe a linear algorithm which, given two paths P,Q as above in a tournament,
finds a path R as above. Hint: use the fact that one can construct R starting from
the first vertex which is x and then proceeding forward along the two paths (as
when one zips a fly), see Figure 2).

3. Describe how to implement Algorithm 1 and 2 such that the running times are O(n log n)
and O(n2), respectively, when we measure the complexity as the number of times we
need to look up the direction of an arc in the adjacency matrix.

4. A digraph D = (V, A) is strongly connected if it contains and (x, y)-path for every choice
of vertices x, y ∈ V . Prove that every strongly connected tournament has a hamiltonian
cycle, that is, a cycle which contains all vertices of T . Hint: Start with a cycle C and
conclude that if C is not a hamiltonian cycle, then, since T is strongly connected, one
can extend the cycle C by adding one or more vertices. Here you can use Lemma 1.

5. Convert you proof above to an algorithm for finding a hamiltonian cycle in a tournament
and give the complexity of your algorithm.


