
338 9. Branchings

Now the theorem follows from Lemma 9.1.1 applied to each term above and
the fact that K1̄(D̂) = K1̄(D). ⊓⊔

Now we can prove Kirchhoff’s famous formula for the number of spanning
trees in an undirected graph G.

Corollary 9.1.3 (Kirchoff’s Matrix Tree Theorem) [578] The number
of spanning trees in an undirected graph G on n vertices is equal to any one

of det(K(
↔

Gī)) i ∈ [n].

Proof: Fix an arbitrary vertex r in G and observe that every spanning tree T

in G corresponds to a unique out-branching B+
r in

↔

G. Now the claim follows
from Theorem 9.1.2. ⊓⊔

Since the determinant of a matrix can be calculated efficiently we obtain
the following (see, e.g., [395, page 53]).

Corollary 9.1.4 There is an O(n3) algorithm for finding the number of out-
branchings rooted at a given of a directed multigraph on n vertices. ⊓⊔

If we actually wanted to list all out-branchings in a digraph D we clearly
have to spend time at least proportional to the number of such branchings in
D. In [565] Kapoor and Ramesh give an O(Nn+n3) algorithm for listing all
out-branchings in a directed multigraph on n vertices and N out-branchings.
The algorithm is based on generating one out-branching from another by a
series of arc swaps.

9.2 Optimum Branchings

Given a directed multigraph D = (V, A) a special vertex s and a non-negative
cost function w on the arcs. What is the minimum cost of an out-branching
B+

s rooted at s in D? This problem, which is a natural generalization of
the minimum spanning tree problem for undirected graphs (Exercise 9.6), is
called the minimum cost branching problem. The problem arises natu-
rally in applications where one is seeking a minimum cost subnetwork which
allows communication from a given source to all other vertices in the network
(see the discussion at the end of the section).

It is easy to find a minimum spanning tree in an undirected graph. The
greedy approach works as follows: order the edges according to their weights
in increasing order E = {e1, e2, . . . , em}. Start from T = ∅ and go through E
while always adding the next edge to T if it can be added without creating a
cycle. This is the so-called Kruskal algorithm (see, e.g., [226]). It is not difficult
to construct examples which show that using a similar greedy approach to
find a minimum cost out-branching in a directed multigraph may be incorrect
(Exercise 9.2).



9.2 Optimum Branchings 339

The minimum cost branching problem was first shown to be polynomially
solvable by Edmonds [275]. Later Fulkerson [357] gave a two phase greedy
algorithm which solves the problem very elegantly. The fastest algorithm
for the problem is due to Tarjan [819]. Tarjan’s algorithm solves the prob-
lem in time O(m log n), that is, with the same time complexity as Kruskal’s
algorithm for undirected graphs [225]. The purpose of this section is to de-
scribe two different algorithms for finding minimum cost out-branching in a
weighted directed multigraph. First we show how to solve the problem us-
ing matroids and then we give a simple direct algorithm based on Edmonds’
original algorithm.

9.2.1 Matroid Intersection Formulation

To illustrate the generality of matroids, let us show how to formulate the
minimum cost branching problem as a weighted matroid intersection problem.
We refer to Section 18.8 for relevant definitions on matroids.

Let D = (V, A) be a directed multigraph and let r ∈ V be a vertex which
can reach all other vertices by directed paths. We define M1 = (A, I1) and
M2 = (A, I2) as follows (here I1, I2 ⊆ 2A):

• A′ ∈ I1 if and only if no two arcs in A′ have a common head and no arc
has head r,

• A′′ ∈ I2 if and only if UG(D〈A′′〉) has no cycle.

It follows from the definition of M2 that M2 is the circuit matroid of
UG(D) (see Section 18.8). It is easy to show that M1 satisfies the axioms
(I1)-(I3) and hence is a matroid. In particular, all maximal members of I1

have the same size n − 1 (by our assumption, every vertex in V − r has at
least one in-neighbour) and thus the rank of M1 is n − 1.

Since r can reach all other vertices, UG(D) is connected and hence the
rank of M2 is also n − 1. We claim that every common base of M1 and M2

is an out-branching with root r. This follows easily from the definition of an
out-branching and the fact that any common base corresponds to a spanning
tree in UG(D), since M2 has rank n − 1.

Thus we can find an out-branching with root r by applying the algorithm
for matroid intersection of Theorem 18.8.11 to M1, M2. Of course such an
out-branching can be found much easier by using, e.g., DFS starting from r.
However, the point is that using the algorithm for weighted matroid intersec-
tion, we can find a minimum cost out-branching B+

r in D. It is easy to see that
the required oracles for testing independence in M1 and M2 can be imple-
mented very efficiently (Exercise 9.3). In fact (and much more importantly in
the light of the existence of other and more efficient algorithms for minimum
cost branchings), using matroid intersection algorithms we can even find a
minimum cost subdigraph which has k out-branchings with a specified root s
in a directed multigraph with non-negative weights on the arcs (Exercise 9.4).
Furthermore, it is shown in Exercise 9.5 that using matroid intersection we



340 9. Branchings

can also solve the following problem; Given directed multigraphs D = (V, A)
and D′ = (V, A′) on the same vertices, a cost function c on A′, a natural num-
ber k and a vertex s ∈ V . Find a minimum cost set of arcs A∗ ⊆ A′ such that
the directed multigraph D∗ = (V, A ∪ A∗) has k-arc-disjoint out-branchings
rooted at s. Clearly, the minimum cost branching problem corresponds to
the case when A = ∅. Hence using matroid intersection formulations one can
in fact solve problems which are much more general than the minimum cost
branching problem.

9.2.2 A Simple Algorithm for Finding a Minimum Cost
Out-Branching

Below we will often call a minimum cost out-branching an optimum out-
branching. Let D = (V, A) be a directed multigraph with a designated root
r ∈ V and c a non-negative cost vector on A. Denote by yv, v ∈ V − r the
minimum cost of an arc entering v. The following easy observation is the key
to the algorithm below.

Lemma 9.2.1 Let c′ be the cost function on A defined by c′(uv) = c(uv) −
yv. Then B+

r is an optimum branching with respect to c if and only if it is
optimum with respect to c′.

Proof: Since every vertex except r has precisely one arc entering it in any
out-branching, c(B+

r ) = c′(B+
r ) +

∑
v∈V −r

yv holds for an arbitrary out-
branching B+

r and the claim follows. ⊓⊔

For a given directed multigraph D and weight function c, let F ∗ be a
subdigraph of D obtained by taking a minimum cost arc entering each vertex
except r, that is, d−

F∗(v) = 1 for v 6= r. Note that the cost of F ∗ is zero with
respect to c′ and hence the following holds, by Lemma 9.2.1.

Lemma 9.2.2 If F ∗ is an out-branching then it is optimum. ⊓⊔

The following result is due to Karp.

Lemma 9.2.3 [567] There exists an optimum out-branching with root r
which contains all but one arc of every cycle C in F ∗.

Proof: Let B+
r be an optimum out-branching which contains the maximum

number of arcs from F ∗. If F ∗ is itself a branching then by Lemma 9.2.2 we
have B+

r = F ∗ so assume that C is a cycle in F ∗ and suppose A(C)−A(B+
r ) =

{u1v1, u2v2, . . . , urvr} has at least 2 arcs and occurring in that order on C.
Consider an arbitrary vertex vi, i ∈ [r] and denote by a(vi) the arc entering
vi in B+

r . By the the choice of B+
r , Hi = B+

r + uivi − a(vi) is not an out-
branching. This implies that Hi contains a cycle which consists of the arc
uivi and a path Pi which starts in vi and ends in ui. Consider the last arc xy
of Pi which does not belong to C. As Hi contains all the arcs of C[vi−1, ui]



9.3 Arc-Disjoint Branchings 341

and every vertex of C has in-degree one in Hi it follows that y = vi−1 (indices
are taken modulo r). Thus we have shown that Hi and hence B+

r contains
a (vi, vi−1)-path. However, this holds for every i ∈ [r] and so B+

r contains a
directed cycle1, a contradiction. Hence we have shown that B+

r contains all
but one arc of C. ⊓⊔

When we contract the cycle C below to get the weighted directed multi-
graph D/C, the arcs incident to vC inherit the costs from the original arcs
between C and V − C.

Lemma 9.2.4 If C is a cycle in F ∗ and W+
r is an optimum out-branching

in D/C (the directed multigraph obtained by contracting C to a vertex vC),
then we can obtain an optimum branching B+

r in D by replacing vC by C
minus one arc.

Proof: Let xvC be the unique arc of W+
r entering vC and let y ∈ V (C)

be chosen so that xy ∈ A and has the same cost as xvC in D/C. Clearly
we can extend W+

r to an out-branching B+
r of D by blowing up C again

and deleting the unique arc of C which enters y (arcs leaving vC in W+
r

are replaced by corresponding arcs starting in vertices from C). By Lemma
9.2.3, there exists and optimum out-branching B̂+

r containing all but one
arc of C and contracting C will tranform B̂+

r into an out-branching B̃+
r in

D/C. Now, by Lemma 9.2.1, it follows from the fact that W+
r is an optimum

out-branching in D/C and C has cost zero w.r.t. c′ that c′(B̂+
r ) ≥ c′(B+

r ),
implying that B+

r is an optimum out-branching. ⊓⊔

Theorem 9.2.5 [275] There is a polynomial algorithm for the minimum cost
out-branching problem.

Proof: We may assume that the root r can reach every other vertex, as
otherwise no branching exists. The algorithm is very simple. First construct
F ∗ and search for a cycle in it. If F ∗ is acyclic it is the desired branching.
If F ∗ contains a cycle C, let D′ = D/C and solve the problem recursively
in D′. Finally convert the optimum out-branching in D′ to an optimum out-
branching of D as described in the proof of Lemma 9.2.4. This algorithm can
easily be implemented as an O(n(n + m)) algorithm. ⊓⊔

9.3 Arc-Disjoint Branchings

This section is devoted to a very important result due to Edmonds [277].
The result can be viewed as just a fairly simple generalization of Menger’s
theorem. However, as will be clear from the next subsections, it has many
important consequences.

1 Note that when r = 1 we do not get the contradiction since P1 is simply C[v1, u1].


