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Combinatorial Optimization II (DM209)) — Ugeseddel 2

Handout material in week 5 S. Fortune, J. Hopcroft and J. Wyllie, The directed subgraph homeo-
morphism problem, Theoretical computer science 10 (1980) 111–121

Stuff covered in week 5:

• Schrijver chapter 8 (see also PS Chapter 13).

• BJG pages 476-482, 482-486 and the hand-out paper by Fortune, Hopcroft and Wyllie on the
subgraph homeomorphism problem.

• I also showed how the polynomial algorithm for the k-path problem for acyclic digraphs can be
used to solve the directed subgraph homeomorphism problem for acyclic digraphs, that is: Given
a fixed acyclic digraph P an input acyclic digraph D and a 1-1 mapping h : V (P ) → V (D); is it
possible to extend h such that arcs of P are mapped to internally vertex disjoint paths in D?

• I gave a proof that the following problem is NP-complete: Given a strongly connected digraph D;
does it contain a spanning strongly connected eulerian subdigraph?

Lectures in week 6: Note that there is no lecture monday Feb. 4th so we meet Tuesday and Thursday.

• Schrijver 9.1-9.2.

• Schrijver 9.5

• Possibly also more NP-completeness proofs using the (s, t)-path construction. See the paper “Arc-
disjoint spanning sub(di)graphs in Digraphs” on the course page (the proof of Theorem 1.5).

• Exercises:

– Look at the problems in Proposition 9.2.1. in BJG and show that these problems are equivalent
(from a computational point of view, that is, if one if polynomial then so are all the others).

– Argue that the 2-path problem is NP-complete for digraphs of maximum out-degree (number
of arcs out of a vertex) 2. Hint: modify the construction in the NP-completeness proof on
pages 480-481 slightly.

– Give a linear time algorithm for the following problem: Given an acyclic digraph D and distinct
vertices s1, s2, . . . , sk of D, decide whether D contains a path P starting in s1, ending in sk
and which contains all of the vertices s2, s3, . . . , sk−1 in that order. Does the problem become
more difficult if we do not require a specific order on s2, s3, . . . , sk−1 but just that they are on
P?

• 2-Satisfiabilty. Khuller Section 30, BJG Section 1.10.

1 Notes on finding subdivisions for (di)graphs in (acyclic di)graphs

Theorem 1 (Robertson and Seymour, 1995) For every fixed natural number k there is an algorithm
of complexity O(n3)1 for deciding for a given input graph G and distinct vertices s1, s2, . . . , sk, t1, t2, . . . , tk
of G whether G has vertex-disjoint paths P1, P2, . . . , Pk such that Pi is a (si, ti)-path.

A subdivision of a graph H = (VH , EH) in a graph G = (V,E) is a subgraph G′ = (V ′, E′) of G and
a mapping of H to G′ with the property that its is 1-1 on the vertices of H and every edge e = uv ∈ EH

is mapped to a path Puv from f(u) to f(v) such that every vertex of Puv − {f(u), f(v)} has degree 2
in G′ (we replace the edge uv by a path in G′ and no two paths corresponding to different edges of H
intersect except possibly at their ends). This definition also makes sense if H has loops as such a loop at
u corresponds to a cycle through f(u) in G′. A subdivision of a digraph is defined analogously.

Corollary 1 For every graph H = (VH , EH) there exists a polynomial algorithm AH which for a given
input graph G = (V,E) decides whether G contains a subdivision of H.

1The constant here depends heavily on k: the complixity is O(f(k)n3) where f(k) grows VERY fast in k.



Proof: Let H = (VH , EH) be given and assume first that we have fixed a 1-1 mapping f : VH → V . If
there is an edge uv ∈ EH such that f(u)f(v) is an edge in G (possibly u = v and then f(u)f(u) is a loop
in G), then we can use this edge to realize the path corresponding to the edge uv and consider H minus
this edge and G minus the edge f(u)f(v). Hence we can first trim off (select) such pairs and then assume
that f(VH) (the set of images of VH) is an independent set in G.

Fix an ordering of the edges around each vertex in H: if u has k neighbours then we label these
vu,1, vu,2, . . . , vu,k (notice that the same vertex gets many different labels, one for each of its neighbours
in VH). Clearly for a given edge e = uv ∈ EH this gives two labels luv and lvu (the number it has in
u’s labelling and in v’s labelling). Now consider the graph GH that we obtain from G by replacing each
vertex f(u) by dH(u) copies, that is, replace u by an independet set F (u) = {f(u)1, f(u)2, . . . f(u)dH(u)}
on dH(u) vertices and join each of these to all neighbours of f(u) in G.

We claim that now G contains a H-subdivision G′ where the vertices of H are {f(u)|u ∈ VH} if and
only if GH contains a collection of disjoint paths {Puv|uv ∈ EH} where Puv starts in f(u)luv and ends
in f(v)lvu . This is easy to see: if the paths exist in GH then we obtain G′ by contracting (identifying)
each set F (u) to the single vertex f(u). Conversely, if we are given a subdivision G′ of H then we obtain
the paths by splitting up each f(u) into dH(u) distinct vertices. Thus it follows from Theorem 1 that for
a fixed 1-1 mapping of V (H) to V (G) we can decide in time O(n3) whether this mapping extends to a

subdivision of H in G. Thus, in polynomial time, we can check for all the
(|V (G)|
|V (H)|

)
1-1 mappings of V (H)

to V (G) to see whether at least one extends to a homeomorphism of H to G in polynomial time (H is
fixed so its size is a constant). �

Theorem 2 (Fortune, Hopcroft and Wyllie, 1980) For any fixed natural number k there exists a
polynomial algorithm for deciding whether a given acyclic digraph D = (V,A) with specified vertices
s1, s2, . . . , sk, t1, t2, . . . , tk has vertex-disjoint paths P1, P2, . . . , Pk such that Pi is a (si, ti)-path.

Corollary 2 For every acyclic digraph H = (VH , AH) there exists a polynomial algorithm for deciding
whether a given acyclic digraph D = (V,A) contains a subdivision of H.

Proof: As above it is sufficient to show that we can decide in polynomial time whether a fixed 1-1
mapping of V (H) to V (D) extends to a homoemorphism of H to D so we assume below that a 1-1
mapping of V (H) to V (G) is given.

As above we may assume that the vertices of H are mapped to an independent set in D (if f(u)f(v)
is an arc and uv ∈ AH then use f(u)f(v) to realize that path and delete the arc uv from AH . If f(u)f(v)
is an arc of D and uv is not and arc of AH , then we can never use the arc f(u)f(v) in a homeomorphism
(because paths must be internally disjoint) and hence we can delete the arc f(u)f(v) from D without
changing the problem).

For each vertex u ∈ VH fix and ordering of the arcs entering u and an ordering of the arcs leaving
u: We label the d−H(u) in-neighbours of u v−u,1, v

−
u,2, . . . , v

−
u,d−

H
(u)

and we label the d+H(u) out-neighbours

of u by v+u,1, v
+
u,2, . . . , v

+

u,d+
H
(u)

. As in the proof above, for a given arc e = uv ∈ AH this gives two

labels l+uv and l−uv (the number it has in u’s out-labelling and in v’s in-labelling). Given the 1-1 mapping
f : VH → V (G) we make a new acyclic digraph GH by replacing each vertex f(u), u ∈ VH by two sets
If(u) = {v−u,1, v

−
u,2, . . . , v

−
u,d−

H
(u)
} and Of(u) = {v+u,1, v

+
u,2, . . . , v

+

u,d+
H
(u)
} and joing every in-neighbour x of

f(v) in G to every vertex y in If(v) by an arc x→ y and every vertex p of Of(v) to every out-neighbour
q of f(v) in G (it is possible that one of the sets If(v), Of(v) is empty in which case we add no arcs
corresponding to that set).

Now it is easy to show that D contains a subdivision of H if and only if DH contains vertex disjoint
paths {Puv|uv ∈ AH} where Puv starts in l+uv and ends in l−uv. �


