
Institut for Matematik & Datalogi February 21, 2013
Syddansk Universitet JBJ

Combinatorial Optimization II (DM209)) — Ugeseddel 4

Handout material in week 8

• Tarjan og Yannakakis, Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs and selectively reduce acyclic
hypergraphs, Siam J. Computing 13 (1984) 566-579. We only cover
pages 566-569.

• Lucena, A new lower bound for tree-width using maximum cardinality
search, siam J. Discrete Math. 16 (2003) 345-353. We just cover the
conclusion that every maximum cardinality search provides a lower
bound for the tree-width of the graph (namely, the maximum number
of edges any vertex has to lower numbered vertices).

• Thomasse, A quadratic Kernel for feedback vertex set, SODA 2009
pages 115-119.

Stuff covered in Week 8

• Chordal graphs based on Golumbic chapter 4 (except section 4).

• Tree width based on Niedermeier sections 10.1-10.4. We covered in full
detail a dynamic programming algorithm for the minimum vertex cover
problem and for the chromatic number problem (see notes below).

Week 9

• Fixed parameter tractability and kernels based on the paper by Thomasse
on the feedback vertex set problem.

• The minimum strong spanning subdigraph problem based on the pa-
per Bang-Jensen and Yeo, The minimum spanning strong subdigraph
problem is fixed parameter tractable, Discrete Applied mathematics
156 (2008) 2924-2929.

• 2-sat based on BJG Section 1.10.

• Niedermeier Section 10.6 (briefly).

Finding the chromatic number of a graph G by dynamic programming based on a tree-

decomposition of G:

• I gave a proof that for every graph G we have χ(G) ≤ tw(G) + 1,
where χ(G) is the chromatic number of G and tw(G) is the tree-width
of G, that is, β − 1 where β is the maximum bag size of some tree
decomposition of G. The proof uses that we have χ(G) = tw(G) + 1
for chordal graphs: Given a tree-decomposition ({Xi : i ∈ I}, I) of G
we add new edges E ′ to G so that in the resulting graph G′ each of
the subgraphs G′[Xi], i ∈ I are cliques. Clearly χ(G) ≤ χ(G′) and
the claim now follows from the fact that G′ is a chordal graph whose
maximal cliques are exactly those induced by the Xi’s.

• I also suggested a dynamic programming algorithm for finding χ(G)
when we are given a tree-decomposition ({Xi : i ∈ I}, I) of G: Let ω
denote the size of a largest bag (Xi) and consider all possible colourings
of the Xi’s by colours 1, 2, . . . , ω (there are |Xi|ω of these. For each
such colouring Ci : Xi → {1, 2, . . . , ω} we initialize m(Ci) as ∞ if Ci

is not a legal colouring (some edge in G[Xi] received the same colour
in both ends) and otherwise m(Ci) is β(Ci) which is the number of
different colours used. Furthermore, we also keep a bit-vector γ(Ci)
which codes which of the ω colours are used in the colouring Ci (so
β(Ci) equals the number of 1’s in γ(Ci)).

After this initialization we are ready to start updating the value γ(Ci)
and hence β(Ci) and m(Ci) using dynamic programming guided by the
tree I: When we update the info for Xi from the info for a child Xj we
first indentify the set Z = XI∩XJ and then, for all of the |Z|ω different
colourings of |Z| in turn: if C is such a colouring then for every proper
colouring Ci of Xi which agrees (that is, uses exactly the same colours
on Z as C) we update as follows: For every colouring Cj of Xj which
agrees with C and which is a legal colouring of Xj consider the number
of 1’s in the OR-sum of the bitvectors γ(Ci) and γ(Cj) and make the
new γ(Ci) := γ(Ci) OR γ(Cj′), where j′ is chosen such that the total
number of used colours (bits that are 1) in Ci and Cj′ is minimum.

We preform this updating for all children of Xi and continue around
the tree in an in-order traversal of I. It can be shown that this will
result in the root bag Xr containing a colouring Cr(Xr) whoose value
m(Cr) = χ(G).

Note that the process above considers the “same” colouring MANY
times because a lot of the colourings in the Xi’s are identical up to a
renumbering of the colours.

