Institut for Matematik & Datalogi February 21, 2013
Syddansk Universitet JBJ

Combinatorial Optimization IT (DM209)) — Ugeseddel 4

Handout material in week 8

e Tarjan og Yannakakis, Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs and selectively reduce acyclic
hypergraphs, Siam J. Computing 13 (1984) 566-579. We only cover
pages 566-569.

e Lucena, A new lower bound for tree-width using maximum cardinality
search, siam J. Discrete Math. 16 (2003) 345-353. We just cover the
conclusion that every maximum cardinality search provides a lower
bound for the tree-width of the graph (namely, the maximum number
of edges any vertex has to lower numbered vertices).

e Thomasse, A quadratic Kernel for feedback vertex set, SODA 2009
pages 115-119.

Stuff covered in Week 8
e Chordal graphs based on Golumbic chapter 4 (except section 4).

e Tree width based on Niedermeier sections 10.1-10.4. We covered in full
detail a dynamic programming algorithm for the minimum vertex cover
problem and for the chromatic number problem (see notes below).

‘Week 9

e Fixed parameter tractability and kernels based on the paper by Thomasse
on the feedback vertex set problem.

e The minimum strong spanning subdigraph problem based on the pa-
per Bang-Jensen and Yeo, The minimum spanning strong subdigraph

problem is fixed parameter tractable, Discrete Applied mathematics
156 (2008) 2924-2929.

e 2-sat based on BJG Section 1.10.

e Niedermeier Section 10.6 (briefly).

Finding the chromatic number of a graph G by dynamic programming based on a tree-

decomposition of G:

e I gave a proof that for every graph G we have x(G) < tw(G) + 1,
where x(G) is the chromatic number of G and tw(G) is the tree-width
of G, that is, f — 1 where (8 is the maximum bag size of some tree
decomposition of G. The proof uses that we have x(G) = tw(G) + 1
for chordal graphs: Given a tree-decomposition ({X; : i € I},I) of G
we add new edges E’ to G so that in the resulting graph G’ each of
the subgraphs G'[X;], i € I are cliques. Clearly x(G) < x(G’') and
the claim now follows from the fact that G’ is a chordal graph whose
maximal cliques are exactly those induced by the X;’s.

e | also suggested a dynamic programming algorithm for finding y(G)
when we are given a tree-decomposition ({X; : i € I},1) of G: Let w
denote the size of a largest bag (X;) and consider all possible colourings
of the X;’s by colours 1,2,... ,w (there are |X;|* of these. For each
such colouring C; : X; — {1,2,...,w} we initialize m(C;) as oo if C;
is not a legal colouring (some edge in G[X;] received the same colour
in both ends) and otherwise m(C;) is 5(C;) which is the number of
different colours used. Furthermore, we also keep a bit-vector ~(C;)

which codes which of the w colours are used in the colouring C; (so
B(C;) equals the number of 1’s in (C;)).

After this initialization we are ready to start updating the value v(C})
and hence B(C;) and m(C;) using dynamic programming guided by the
tree I: When we update the info for X; from the info for a child X; we
first indentify the set Z = X;NX; and then, for all of the |Z|“ different
colourings of |Z| in turn: if C' is such a colouring then for every proper
colouring C; of X; which agrees (that is, uses exactly the same colours
on Z as C) we update as follows: For every colouring C; of X, which
agrees with C' and which is a legal colouring of X; consider the number
of 1’s in the OR-sum of the bitvectors v(C;) and v(C;) and make the
new v(C;) := v(C;) OR v(Cj/), where j' is chosen such that the total
number of used colours (bits that are 1) in C; and C}s is minimum.

We preform this updating for all children of X; and continue around
the tree in an in-order traversal of I. It can be shown that this will
result in the root bag X, containing a colouring C..(X,) whoose value
m(C;) = X(G).

Note that the process above considers the “same” colouring MANY
times because a lot of the colourings in the X;’s are identical up to a
renumbering of the colours.

