
Institut for Matematik og Datalogi
Syddansk Universitet

September 11, 2014
JBJ

DM517 – Fall 2014 – Weekly Note 3

Lecture in week 37:

We covered Section 1.4 and Section 2.1 except the last part on Chomsky grammars Key
points:

• Not all languages are regular, for example L = {anbn : n ≥ 0} is not, since a FA
cannot remember how many as it has read.

• The Pumping Lemma can be used to prove that a language is not regular. The proof
goes by contradiction, so assume that the language in question is regular and apply
the lemma to yield a string that should be in the language but is not.

• The closure properties of regular languages (union, complement, intersection, differ-
ence, concatenation, and Kleene star) can also be used to prove the nonregularity of
a language. One is example is L = {w ∈ {0, 1}∗|#0 = #1}. Suppose L is regular,
then L′ = L∩0∗1∗ is also regular as regular languages are closed under interesection.
However, L′ is precisely the language {on1n|n ≥ 0} which we already know to be
non-regular, contradiction. So L cannot be regular.

• Context-free grammars specify context-free languages and are more powerful than
regular expressions.

• A derivation of a string in a context-free grammar can be visualized by a parse tree.

• If some string has more than one parse tree in a context-free grammar, the grammar
is said to be ambiguous.

• The membership problem for NFAs is as follows: given an NFAM = (Q,Σ,P(Q), s, F)
and a string w ∈ Σ∗ decide whether M will accept w. If M is a DFA this is trivial,
just follow the unique path starting in the initial state and “spelling” w. Accept
w precisely if this path ends in an accepting state. Now assume that M is non-
deterministic. We can obtain an algorithm for the membership problem by first
converting M to an equivalent DFA M ′ using the algorithm in Section 2.3 and then
check whether M ′ accepts w as above. This may take exponential time as M ′ may
have 2|Q| states. There is also an algorithm of complexity O(|Q|3 + |w||Q|2) which
works as follows: first calculate, for each q ∈ Q the set E(q) which can be reached
from q via ε-transitions. This can be done in time O(|Q|3). Now let w = w1w2 . . . w|w|
and let S = E(s) (the ε-closure of the initial state. Let S ′ denote all states we can

1

reach from some q ∈ S by reading the first symbol w1 and let S ′′ =
⋃

r∈S′ E(r) de-
note the ε-closure of S ′. Now let S = S ′′ and process the next character w2 of w.
Proceeding this way, after w such iterations we have that the current S is precisely
those states we can reach from s via w and possibly some ε-transitions. It is not hard
to check that this algorithm has the claimed complexity.

• Checking whether L(M) = ∅ for an NFA M = (Q,Σ,P(Q), s, F) is very simple:
just check whether there is any path from s to a final state in M (no matter which
symbols are on the edges, i.e. ignore these). If there is such a path L(M) 6= ∅ and
otherwise L(M) = ∅ (note that we may have L(M) = {ε} which is NOT the empty
set). So in time O(|Q|2) we can decide if L(M) = ∅.

Lecture September 15, 2014:

• Last part of Section 2.1

• Push-down automata. Sipser pages 111-116.

• Non context-free languages. Section 2.3

Exercises September 17, 2014:

• 1.29(a),(b) and 1.30.

• 1.35

• 1.51(a),(c),(d)

• 2.2

• 2.4

• 2.6(b),(d)

• 2.14 and 2.16

• Problem 1 and 2 January 2009.

2

