
Institut for Matematik og Datalogi
Syddansk Universitet

October 2, 2014
JBJ

DM517 – Fall 2014 – Weekly Note 6

First obligatory assigment

This will be posed very shortly on Blackboard. I will mail you when it is ready.

Exam date

Pending approval by the studyboard the exam date will be Friday December 19th. Rember
that the exam is digital as all other written exams at SDU.

Lecture in week 40, 2014:

We covered Section 3.1 on Turing machines.

Key points:

• A Turing machine (TM) is an automaton whose head can move both left and right.
Furthermore, a TM may alter its tape which is one-way infinite.

• TMs are much more powerful than DFAs and PDAs. In fact, a TM is generally
accepted to be as powerful as modern computers, as hypothesized by the Church-
Turing thesis.

• TMs provide insight into the theoretical limits of computation, i.e. what computers
can do and how fast they can do it.

• A TM M recognizes a language L iff every string in L leads M to its accept state.
Strings not in L will either lead to the reject state or M will loop forever. L(M)
denotes the language recognized by M . Note that every TM recognizes exactly

one language, namely the set of strings started upon which it halts in its accept
state!

• A language L is called recognizable if there is some TM M that recognizes L. The
class of recognizable languages is set of all the languages which are recognized by
some TM.

• A TM M decides a language L iff every string in L leads M to its accept state and
every string not in L leads M to its reject state. In particular, M halts on every
string!

• A decider is a TM that always halts (and thus ends in either its accept state or in
its reject state). Every TM which is a decider decides exactly one language

namely the set of strings started upon which it halts in its accept state!

• A language L is called decidable if there is some TM M that decides L. The class
of decidable languages is set of all the languages which are decided by some TM.

1



• If a language is decidable, then it is also recognizable but the opposite is not true as
we shall see soon!

• There are different ways to specify a TM: transition table, pseudo code, state diagram,
and high level description.

• Terminology:

Different books use different names for the same concept. In old exam problems you
may find names different from the ones used in the book.

– Turing computable (Turing beregneligt) = decidable (afgørligt) = recursive
(rekursivt)

– Partial Turing computable (partielt Turing beregneligt) = semidecidable (semi-
afgørligt) = recursively enumerable (rekursivt enumerabelt) = Turing enumer-
able (Turing enumerabelt) = recognizable

• I described a couple of elementary TM’s which can be used as subroutines These are

– Shift right (SR) which starts in the configuration q0w and ends in the configu-
ration qaccept ✄ w.

– Shift left (SL) which starts in the configuration q0#w and ends in the configu-
ration qacceptw. Here # is some symbol not in the alphabet of the language L

that we work on.

These are just a few examples of useful subroutines one can easily make. There are
more in the exercises below. Note that given such subroutines we can now start
building more complicated ones by concattenating these or using them as “states”
in diagrams. By this we mean the following: Suppose M1,M2,M3 are different TMs
with the same input alphabet. Then by M1M2M3 we mean the TM that starts in
the stating state of M1 and runs M1. Then when M1 would stop in its accepting
state, we start M2 and run it etc. We can also make arrows like this M1

a
→ M2 which

is supposed to mean that we first run M1 and then if it stops in its accepting state
and the head is reading the symbol a, then we start M2 with its head in the current

position. Similarly we could write M1

6=a
→ M3 to mean that when M1 stops we start

M3 provided that the character current read is not ’a’. Now you should be able to
continue this idea and draw diagrams of fairly complicated TMs starting from simple
TMs as building blocks.

Lecture October 6, 2014:

• Section 3.2 on variants of Turing Machines.

• Section 3.3 on the definition of an algorithm

2



R ⊔a

(a)

a 6= ⊔

✄

(b)

R⊔L ⊔RaL

Figure 1: In (a) the TM moves right and the erases ’a’s until a symbol different from ’a’ is
read. In (b) we show a diagram of SR (the right shifting machine). Note that here we use
the notation that the TM remembers a after reading it so that it can write it later (one
position to the right).

• We may also start on Section 4.1 on Decidability

Exercises October 8, 2014:

• 3.2 (b)-(d) on page 187.

• 3.7 and 3.8 on page 188.

• This exercise is about constructing some simple Turing machines. For each of the
following you should explain how to realize TMs with excatly that property. Once
you have constructed a TM you may use it as a building block for constructing other
TMs. Note that we do not assume that these TMs are started on the leftmost cell
of the tape!

– The TM R that just moves its head one position to the right from where it is
started and stops.

– The TM L that just moves its head one position to the left from where it is
started and stops. Note that here you need to say what L will do if is it started
on the leftmost tape cell.

– The TM Ra, where a ∈ Γ, for some alphabet Γ. Ra will move to the right until
it finds the symbol ’a’ and then it will stop. Note that if there is no ’a’ to the
right of the current head position, then Ra will never stop.

– The TM R6=a, where a ∈ Γ, for some alphabet Γ. R6=a will move to the right
until it finds a symbol that is different from ’a’.

– The left moving equivalents La and L6=a of Ra and R6=a.

3



– The TM a, where a ∈ Γ, for some alphabet Γ. This TM simply writes the
symbol ’a’ and stops (gives over control to the next TM in some sequence that
we are building when we use this as a subroutine).

Here are some examples of what you can do with these simple machines:

– Construct a TM M that decides the language {anbncn|n ≥ 0}. You should
explain important steps of the TM and produce a diagram of M as composed
by simple TMs ala the ones described above.

– Make a TM diagram for the TM C (Copy).

– Describe a Turing machine M which given a string w = w1w2 . . . wn returns the
string wodd where wodd = w1w3 . . . wn−2wn if n is odd and wodd = w1w3 . . . wn−3wn−1

if n is even. That is, M starts in the configuration q0w and ends in the config-
uration qacceptwodd.

– Exam 2000 problem 3 (d)

– Exam 2002 problem 5

4


