Cormen Chaptu 5

5.1 The hivering problem

- up : o there are n candidates for a job • you interview them one by one after interviewing the ith comdidate you must decide immediately whether you must decide in o
If you had previously hired a candidate if you had previously next a condidate is
j < i and want to hire candidate i you must fire candrdahj again ⁶⁰€: hire the best candidate while spending as little money on the \int_{0}^{∞}

• We can ignore the cost of interviewing as we must interview all candidates . • assume it cost, eh to hire ^a person

(no matto whether we later tire the possosain)

• Then we want to minimize
$$
m.c_n
$$
 when
m is the # of persons we have

Worst can: We hire all so cost n.ch m is the # of person we!
Nowt can: We him all so con
This will happen if $9,42$ $<$ $\frac{a}{n}$ colum 9- e. is the quality of the ⁱ ' th candidate How do we avoid this? Randomize the order in which we interview the candidates Worst can shill the same but what about the expected cost ?

$$
X_i = \begin{cases} 1 & \text{if we have candidate } i \\ 0 & \text{else} \end{cases}
$$

$$
X = \sum_{i=1}^{n} X_i
$$
 is the number of candidates
we have

$$
Cost\circ f
$$
 process i s $X.c_n$

When will we have *cardi*
$$
dah
$$
 c
14 fu is 25 fu $bcst$ we have $secu$
so for so $p(x,t) = \frac{1}{c}$

$$
E(X) = E(\sum_{i=1}^{n} X_{i})
$$
\n
$$
= \sum_{i=1}^{n} E(X_{i})
$$
\n
$$
= \sum_{i=1}^{n} p(X_{i}=1)
$$
\n
$$
= \sum_{i=1}^{n} \frac{1}{i}
$$
\n
$$
= \ln n + O(1)
$$
\nSo $E(X) \in O(\ln n)$
\nSo $E(X) \in O(\ln n)$
\nNow **probability** ?

Cornen 5.3

Permut by
$$
math_{s}(A)
$$

\n1. $n \in [A1]$

\n2. For $i \in 1$ in the form $(1, n^3)$

\n3. $P(i) \in \text{Random}(1, n^3)$

\n4. $sort A$ using P as key

\n5. $return A$

\nLemma

\n $P(P(i + P(j) \mid 1 \le i < j \le n) \ge 1 - \frac{1}{n})$

\n9. $A_{i,j}$ is the event that $P(i) = P(j)$

\n1. $P(i) = \frac{1}{n^3}$

\n2. $A = \bigcup_{1 \le i < j \le n} A_{i,j}$

\n3. $A = \bigcup_{1 \le i < j \le n} A_{i,j}$

\n4. $max_{1 \le i < j \le n} \left(\bigcup_{1 \le i < j \le n} A_{i,j} \right) \le \sum_{1 \le i < j \le n} p(A_{i,j})$

\n5. $\sum_{1 \le i < j \le n} p(A_{i,j}) = \sum_{1 \le i < j \le n} \frac{1}{n^3} = \frac{\binom{n}{2}}{n^3} < \frac{1}{n}$

Lemma 5.4 Permute by sorting produces a uniform random permentation when all the priorities PCI), P(2), -- , PCu) are Otistinat P: suppon first that PUICP(2)< ...<P(4) We want to show that the permutation 123-1 OCCOUS Welty publicle/1/3 1 For $c = c_1 z_1$, $u \in X$, bether went that A[i] vecuives the c'th smallest P-volue Then we seek $\rho(\chi_1,\chi_2,\ldots,\chi_n)$ $p(X_1 \wedge x_2 \wedge \cdots \wedge x_n) = p(X_1) p(X_2 | X_1) \cdot p(X_3 | X_1 \wedge X_2)$ \cdot - $P(X_{N}|X_{l}...X_{n-l})$ $P(X_1) = \frac{1}{n} P(X_2 | X_1) = \frac{1}{n-1}$ $P(X_{i\epsilon_{1}}|X_{i}...X_{i})=\frac{1}{n-i}$

Hence $p(X_1 \wedge \ldots \wedge X_n) = p(X_1) \cdot \rho(X_2 | X_1) \cdot \ldots \cdot p(X_n | X_n \cdot \ldots \cdot X_{n-1})$.nl/n)--plXp.plXalxp....p(XnlKn..nXn-i)--1-nn-.i.-z-iI---nT. Same argument works for an arbitrary promutation σ (1) σ (2) \cdot -oln) of 1, 2. -n: . The element with index och has probability to of receiving the lowest ^P -value of receiving the boost is an extendity into of receiving the ⁱ ' th lowest ^P -value etc $D.$ Permute by sorting runs in time Olulosa) but only works if all ^P-values are distinct other win we must repeat the algorithm Expected # of vepe hitions is at most pected $\#$ of vere $n \to 0$
 $\frac{1}{1-\frac{1}{n}} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1} \leq 2$ can we do better ?

Kandomin in Place (A) $n \in H$ For c'El ton do Swap A[i] with A [Random (i, a)] Return A Rand(c'a) $2 - 2 - 3$ $\begin{array}{|c|c|c|c|c|} \hline & \cdots & \ast \\ \hline & & \ast \end{array}$ σ already Swap then Fixal Definition A k-permutation of an a-n+A is any ordered k-sesset of A Then an $P(n,k) = \frac{n!}{(n-k)!}$ of the

Lemma S.S. Randomnequutative in place produces a
\n(operator perquutative)
\n(1) just before itzations to open important
\n(2) just before itzations to the first two
\neurup (c-1)-perquutative of A has probability
\n(n-i+1) or this of the elements in
\n(1-i+1) in that order
\n(2) in that order
\n(3) the start with
$$
i=1
$$
 and the only positive
\n(4) the sum of the first one element of A
\n(5) can also take $i=2$ as a real if has possible
\n(6) the sum of the first one element of A
\n(7) can also be the sum of a real numbers
\n(8) is a non-1.

Terminshev
$$
i = nt
$$

\n $(I) = 0$ A $[1, 2, \ldots n] = 2x_1x_2 \cdots x_n > \text{for fixed}$
\n $permutative < 2x_1x_2 \cdots x_n > \text{with probability}$
\n $\frac{(n-n)!}{n!} = \frac{0!}{n!} = \frac{1}{n!}$